

Electromechanical Products Catalog

Publication No.: GEZ-7723F

Copyright © 2003 GE Multilin

GE Multilin

215 Anderson Avenue, Markham, Ontario Canada L6E 1B3

Tel: (905) 294-6222 Fax: (905) 201-2098 Internet: http://www.GEindustrial.com/multilin

GE Protective Relays

Prnd	urt	Catal	เกก
ı ıvu	uvı	Vului	UЧ

Quick Index

Quick and General Indexes	1
Overcurrent Relays	2
Pilot and Distance/Transmission Systems	3
Directional Relays	4
Differential and Timing Relays	5
Auxiliary Relays	6
Reclosing Relays	7
Synchronizing Relays	8
Generator and Motor Protection Relays	9
Voltage and Frequency Relays	10
Test Equipment and Accessories	11
General Information, Dimensions and Data	12

GE Protective Relays

RELAY Type	DESCRIPTION	SECTION	RELAY Type	DESCRIPTION	SECTION
BDD	Trans. Diff., Harm, Rest	5	IFV	Time Overvoltage	10
BFC	Inst. O.C., Harm, Rest.	2	IJC	Current Balance	2
CAP	Power Directional	4	IJD	Machine Differential	5
CCP	Power Directional	4	IJF	Frequency	10
CEB	Phase Offset MHO Distance	3	IJS	Synchronism Check Phase Directional Overcurrent Ground Directional Overcurrent Dir. Overcurrent, Volt Rest.	8
CEH	Loss of Excitation	9	JBC		4
CEX57	Angle Impedance	9	JBCG		4
CEY	Phase MHO Distance	3	JBCV		4
CEY CEYG CFC CFD	Phase Distance Overcurrent Ground MHO Distance Inst. Overcurrent Machine Differential	3 3 4 5	NAA NBD NBV NGA	Auxiliary for Pilot and Distance Relaying Bus Differential Voltage Balance Auxiliary	5 10 6
CFV	Inst. Overvoltage Voltage Balance Over- and Underpower Inst. Overcurrent	10	NGV	Instantaneous Voltage	2
CFVB		10	NLR	Reclosing	7
CFW		4	PJC	Instantaneous Voltage	10
CHC		2	PJG	Machine Field Ground	9
CJC CJCG CLPG GCXG	Phase Directional Overcurrent Ground Directional Overcurrent Carrier Ground Step Ground distance	4 4 3 3	PJV PVD SAM SBC23	Over- Undervoltage Bus Differential Static Timing Static Breaker Backup, Drawout	10 5 5 2
GCX GCXY GCY GGP	Phase Reactance Distance Phase Reactance, MHO Distance Phase MHO Distance Sensitive Power Directional	3 3 9	SBC31 SBC53 SBD SCA	Static 3 Phase Overcurrent Static Breaker Backup, Rack Mtd. Static Bus Differential Static Dirt. Comparison Blocking Aux.	2 2 5 3
GSY51	Gen. Out of Step	9	SFF	Static Underfrequency Static Negative Sequence Overcurrent Static Synch. Check Static Phase Distance	10
HAA	Annunciator Auxiliary	6	SGC		9
HEA	Auxiliary Lockout	6	SLJ		8
HFA	Multicontact Auxiliary	6	SLY		3
HFC	Instantaneous Overcurrent	2	SLYG	Static Ground Distance	3
HGA	Auxiliary	6	STA	Static Transformer Auxiliary	2
HGA 18	Reclosing	7	STD	Static Trans. Diff.	5
HMA	Auxiliary	6	STV	Static Volts/Hertz	10
HSA	Auxiliary Lockout	6	TOV	Modular Voltage	10
IAC	Time Overcurrent	2	XCA	Test Probes for "C" Case	11
IAV	Time Over- Undervoltage	10	XLA	Test Plug for "A" Case	11
IBC	Phase Directional Overcurrent	4	XRT	Tool Kit	11
IBCG IBCVB ICR ICW IFC	Ground Directional Overcurrent Directional Overcurrent, Voltage Rest. Undervoltage & Phase Seq. Time Overpower Time Overcurrent	4 4 10 4	XTM	Test Plugs & Card Extender Auxiliary Transformers Portable Test Rectifers Tripping & Blocking Rectifiers	11 11 11 11
IFCS IFCV IFD	Time Overcurrent Time Overcurrent with Voltage Control Time Overcurrent with Voltage Restraint Transformer Differential	2 9 9 5			

Specifying Directions

Component Relays and Devices Nuclear 1E Applications

GE Protective Relays

TABLE ARelays and Control Switches Qualified to Meet M&CBD's Interpretation of IEEE 323-1974

Devices				
HEA61A		HSA11A	NGV11B()A
HEA61B		HSA11B	NGV13B()A
HEA61C		HSA11C	NGV18A()A
HEA61BA			NGV21B()A
		IAV53L()A	NGV29A)A
HFA151A()F	IAV55C()A	`	,
HFA151A()H	` ,	PVD21B()A
HFA151B()F	IFC51AD()A	PVD21D()A
HFA151B()H	IFC51BD()A	`	•
		IFC53AD()A	SAM11B()A
HFA154B()F	IFC53BD()A	·	•
HFA154B()H	IFC66AD()A	SFF31A()A
HFA154E()F	IFC66BD()A	SFF31C()A
HFA154E()H	IFC66KD()A	SFF31D()A
		IFC77AD()A	SFF32C()A
HFC21B()A	IFC77BD()A	SFF201B()A
HFC23C()A	IFC95AD()A	SFF202B()A
		IFC95BD()A	SFF204B()A
HGA111A		IFCV51BD()A		
HGA111A()F		SLV11A()A
HGA111J		IJD52A()A		
		IJD53C()A	STD15D()A
HMA111A			STD16C()A
HMA111B		IJF51A()A		
		Switches * *		
		SBM Switch		
		SB-1 Switch		
		SB-9 Switch		
		SB-10 Switch		

**Notes:

- SB-1 and SB-9 switch qualification covers standard single switches with a maximum of 32 contacts and SB-10 switches up to 10 stages. Switches with palladium contacts, locking handles and standard pull-to-lock construction are also qualified. SB-9 Tandem switches gear operated with two or three banks are also qualified.
- SBM switch qualification covers standard single switches with a maximum of 20 contacts. Locks, palladium contacts or Tandem arrangements are not available.
- All qualifications cover switches that require removable handles, but does not qualify a part such as a removable handle that must be purchased as a separate part.

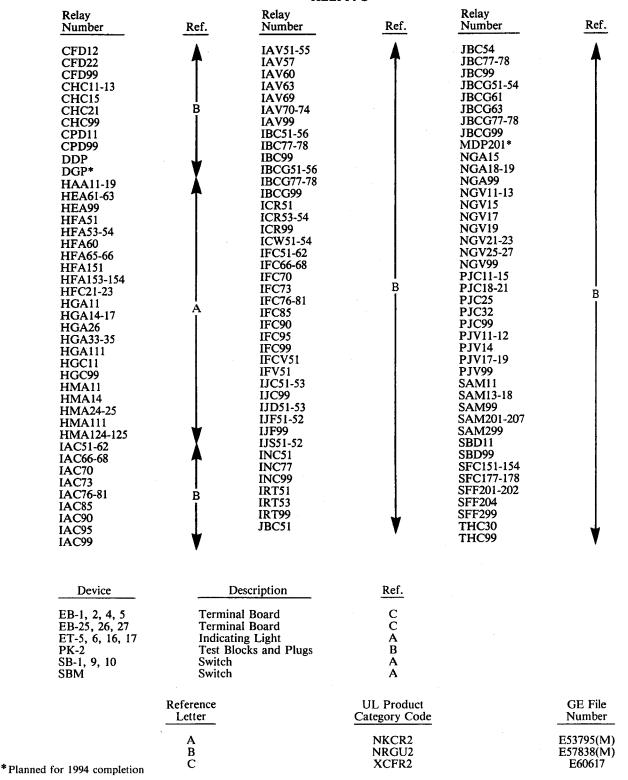
TABLE B

Accessories Qualified to Meet IEEE 323-1974

Note: These accessories (Table B) are commercial grade items which will be supplied from warehouse stock. Orders which stipulate 10CFR21 will not be accepted.

EB-25 Terminal Boards EB-26 Terminal Boards

EB-27 Terminal Boards ET16/ET17 Indicating Lights PK-2 Test Block EB-1 Terminal Boards



List of UL Recognized Devices

GE Protective Relays

The following devices are UL recognized. The letters in the "Ref." columns refer to the UL Product Category Codes and Manufacturer's File Number. These category codes and file numbers locate the recognized devices in the "UL Recognized Component Directory."

RELAYS

Application Cross Reference

GE Protective Relays

The following cross reference is intended to illustrate GE Relays that approach functional equivalence to the listed counterparts. For specific application guidance, consult the factory.

ABB (W)	GE
AR ARS BL-1 CA CA-16 CA-26 CF-1 CM CO-2 CO-4 CO-5 CO-6 CO-7 CO-8 CO-9 CO-11 COD COM-5 COM-6 COM-7 COM-8 COV-7 COV-8 COV-8 COV-7 COV-8 COV-9 COV-11 CP CR CR-6 CR-7 CR-8 CR-9 CR-11 CRC-6 CRC-7 CRC-8 CRC-9 CRC-11 CRD-6 CRD-7 CRD-8 CRD-9	SBA SBA THC, TMC IJD52A, IJD53C IFD52B IFD51D IJF51 IJC51E IFC95 IAC66S, IAC66T IFC66 IFC51 IFC53 IFC53A IFC77 IAC59C IFC66K IFC51B IFC51B IFC51B IFC51B IFC53B IFC77B SGC21 IFCV IFCV IFCV IFCV IFCV IFCV IFCV IFCV
CR-11	IBC77M
	1
	IFCS
COM-7	
	IFD51D
CA-16	
CA	IJD52A, IJD53C
BL-1	THC, TMC
	SBA
· AR	SBA
ABB (W)	GF

iance, consult the factory.				
ABB (W)	GE			
CV-25 CV-26 CV-27 CV-26 CV-27 CVD CVE CVE-1 CVE-2 CVQ CWD DGF DRC-1 DT-3 H-3 HCB HRU HU-1 HU-4 HV-4 IRC-6 IRC-7 IRC-8 IRC-9 IRC-11 IRD-61 IRD-61 IRD-71 IRD-81 IRD-91 IRD-91 IRD-91 IRP-7 IRP-8 IRP-9 IRP-1 IRP-9 IRV-7 IRV-8 IRV-9 IRV-7 IRV-8 IRV-9 IRV-1 IRV-8 IRV-9 IRV-1 IRD-1	IFV71B IAV73A,IAV73B IAV73A,IAV73B IAV69B IJS52A,IJS51A IJS52 IJS52E,F,G NBV11+IAV54 ICW51B ICW52A,ICW53A PJG12B SLR12A IRT51F CAP15A SPD BFC11A STD15 BDD16B STD17C STD17C JBCG51M, MLCG JBCG51M, MLCG JBCG53M, MLCG JBCG53M, MLCG JBCG53M, MLCG JBCG51M, MCG JBCG51M, M			
KLF-1 KO-1 KO-3	CEH CHC11 CHC21			
KRC KRD	CJCG16M CJCG16M			

Application Cross Reference

GE Protective Relays

ABB (BBC)	GE
DPU	DDP
ITE-25S	IJS51
ITE-25V	IJS52D,IJS52E
ITE-27	IAV
ITE-27B	PJV
ITE-27H	NGV,SLV
ITE-27S	PJV
ITE-32	CAP,CCP
ITE-32&50	CJC
ITE-32&51	IBC,JBC
ITE-32D&50	CICG
ITE-32D&51	IBCG, JBCG
ITE-32Q&50	CNP
ITE-32R	ICW
ITE-40	CEH
ITE-46D	IJC
ITE-46Q	SGC
ITE-47	ICR
ITE-47H	CFV
ITE-49	TMC
ITE-49T	IRT
ITE-50	PJC
ITE-50R + 50D	BFC
ITE-51	IAC66M

ABB (BBC)	GE
ITE-51E ITE-51I ITE-51I ITE-51S ITE-51Y ITE-51 + 50D ITE-59 ITE-59F ITE-59G ITE-59H ITE-59N ITE-60 ITE-60Q ITE-60Q ITE-62I ITE-62T ITE	IAC77,IFC77 IAC51,IFC51 IAC66A,IAC66B IAC55 IAC53,IFC53 IAC66K,IAC66T IAV STV IAV51D,IAV51K NGV,PJV NGV,PJV CFVB NBV+SAM SAM SAM PJG ACR MLR,SLR HGA18,NSR IJF,SFF PVD,SBD CFD
ITE-87T	BDD,STD

GEC/A	GE
LFCB LFDC LFZP (OPTIMHO) SHNB (MICROMHO) SHPM (QUADRAMHO)	DLS PLS,TLS DLP,TLS,TYS3 DLP,PLS,TYS3 DLP,TYS3

SEL	GE
SEL-68	OST
SEL-121	DLP
SEL-121C	DLP
SEL-121D	DLP
SEL-121F	DLP

SEL	GE
SEL-121G SEL-151 SEL-167 SEL-BFR SEL-PG10	DLP DDP DLP SBC DLP

KEY: ABB (BBC) = ABB (formerly Brown Boveri)
ABB (W) = ABB (formerly Westinghouse)
BE = Basler Electric
GEC/A = General Electric Co. of England/Alsthom
SEL = Schweitzer Engrg. Labs

(gg)

Specifying Directions

GE Protective Relays

HOW TO SPECIFY

(See earlier page this section for Nuclear 1E list) (See earlier page this section for U/L Listed Devices)

A. SWITCHES

Refer to Section 13 under "Ordering Directions."

B. ACCESSORIES

Specify complete catalog number of accessory device per tables in Section 13 and 12.

C. COMPONENT RELAYS

Complete model number of relay, if known (refer to Section 2 through 11) should be specified to save time in scheduling shipments.

Where model number cannot be specified, the following is required:

1. Specific Ratings and Calibration

- (a) Specify application or type relay, such as IFC51 or IBC53.
 - (b) Current and/or voltage rating.
- (c) Frequency in Hertz if alternating current.
- (d) Rating of instantaneous unit, if unit required.
 - (e) Dc control voltage.
- (f) For distance relays, ohms reach and/or offset.
- (g) For Type GES synchronizing, breaker closing time.

2. Requirements and Mounting Details

(a) Some relays, particularly auxiliary relays, have several different type mounting alternatives to select from. See applicable relay catalog page and specify "Panel Thickness." If panel thickness is not specified, hardware suitable for up to 1/4 inch panel mounting will be supplied.

- (b) Special requirements for individual relays should be carefully noted on the order. Also, note any unusual current or voltage calibration and/or settings.
- 3. Special Requests for new relays or accessories (new ratings, new wiring configurations, new designs, etc.) should contain complete information. Factory will establish price and shipment and inform customer and district. Orders for special requests will not proceed until acceptance of price by customer.
- 4. Requests for special tests or documentation will be reviewed by Meter and Control Department.
- **5.** A Certificate of Conformance for selected items is available at an extra charge, but such special requirements must be noted on the original factory order.
- **6. Proof of delivery requests** may result in an extra charge.
- 7. Refer to earlier page this section for Nuclear Station Class 1E Applications.

D. PROTECTIVE RELAY SYSTEMS

Complete model number from appropriate "Selection Guides" in Section 3 should be provided when available.

If the complete model number is not available please specify:

- 1. Protection System Type (e.g. DLP)
- 2. All necessary ratings and features using the appropriate Selection Guide for reference
- 3. Any requirements for test accessories or spare modules
- 4. Number of I/Bs required
- 5. Any special tests.

E. COMMUNICATION SYSTEMS AND EQUIPMENT

Complete model numbers from appropriate "Ordering Nomenclature" Tables in Sections 14 and 15 should be supplied when possible.

If the complete model numbers is not available, please specify:

- 1. Communication System Type (e.g. Keyed Carrier Type CS28A or FSK Power Line Carrier CS61C) or equipment type (e.g. Wide-Band Line Tuner CL03A).
- 2. Ratings and Features Required, using the appropriate "Ordering Nomenclature" and/or Tables in Section 14 or 15 e.g. for CS28A determine Bandwidth, Battery Voltage, Transmit Power, Frequency, etc.
- 3. Any requirements for test accessories or spare modules.
- 4. Number of I/Bs required.
- 5. Any special tests.

F. RENEWAL PARTS

Provide complete renewal part catalog number (from appropriate Renewal Parts Publication — See list in Section 17) when possible.

If the complete catalog number cannot be found in the parts bulletin, provide a complete description of the part plus the COMPLETE CATALOG NUMBER and description of the device which contains the desired part.

Standard hardware, such as screws, nuts, bolts, washers, etc. and cover glass to component relays, which can be purchased locally in the open market, are not listed and should be obtained locally.

SECTION: 2

Overcurrent Relays

HFC	Instantaneous Overcurrent 1
IAC	Time Overcurrent
IFC	Time Overcurrent
PJC	Instantaneous Overcurrent
BFC	Instantaneous Overcurrent
CHC	Instantaneous Overcurrent
IJC	Current Balance
SBC	Static Breaker Backup
STA	Static Transformer Auxiliary Relay 34

HFC

Instantaneous Overcurrent Relays

GE Protective Relays

Direct Trip Instantaneous Overcurrent Function

DESCRIPTION

The Type HFC relays consist of one or more hinged armature instantaneous over-current units. Each unit has two electrically separate contacts, and is assembled in a single end draw-out Type C1 case. The units have a high-seismic rating, and include a target which is latched and raised into view when the unit operates. The targets are manually reset by a button on the front of the relay cover.

APPLICATION

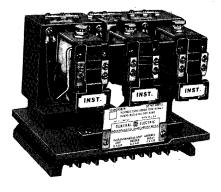
The Type HFC relays find general application where a direct trip instantaneous overcurrent function is required. Typical applications are on transmission lines where it is desired to supplement existing distance relays, or pilot schemes with instantaneous overcurrent relays set to detect severe close-in faults.

The Type HFC21B can be applied with a doughnut-type CT encircling the three phase conductors (ground sensor scheme) to provide sensitive ground fault protection.

The Type HFC23C relay can be used to provide differential protection of a motor usually by means of one self-balanced primary current.

DESIGN CHARACTERISTICS

The HFC relay consists of a molded case, cover, support structure assembly and a connection plug to make the electrical connections. When the connection plug is withdrawn, the trip circuits are opened first and then the CT circuits are shorted. The window provides visual confirmation of CT shorting.

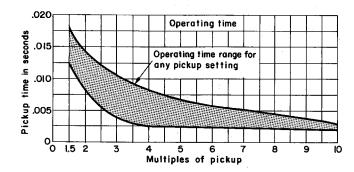

RATINGS

The HFC relays are designed for operation in an ambient air temperature from -20 C to +55 C. The contacts will carry 30 amperes trip current.

BURDENS

The instantaneous units have a tapped coil for operation on either of two ranges (H or L). Selection of the high or low range is determined by the position of the link.

Burdens are listed below.


(Photo 8043212)
Fig. 1. HFC23C relay (out of case)

CHARACTERISTICS

The instantaneous units have either a 25 to 1 or 8 to 1 range with a tapped coil. There are high and low ranges selected by means of links located on the top of the support structure. The time current curve for the instantaneous unit is shown below.

Hi- seismic Inst. Unit	Hz	Link Position	Range (Amps)	Min. Pickup (Amps)	Continuous Rating (Amps)	One-Second Rating (Amps)①		Burdens at Min Pickup (Ohms)	•		Burdens In Ohms (Z) Times Pickup	
(Amps)				<u> </u>	<u> </u>	(Ampa)@	R	Х	Z	3	10	20
0.5-4		L	0.5-2	0.5	0.75	94	10.63	9.77	14.44	9.81	8.56	7.80
	60	Н	2-4	2	1.5] ~ [5.13	3.49	6.21	4.66	4.26	4.18
2-50	1	L	2-10	2	3.7	130	0.750	0.650	0.992	0.634	0.480	0.457
		Н	10-50	10	7.5	1 .55 [0.070	0.024	0.074	0.072	0.071	0.070
0.5-4		L	0.5-2	0.5	0.75	94	8.86	8.14	12.03	8.18	7.13	6.50
	50	Н	2-4	2 ·	1.5	1 ~ [4.28	2.91	5.18	3.88	3.55	3.48
2-50]	L	2-10	2	3.7	130	0.625	0.542	0.827	0.528	0.400	0.380
	1	Н	10-50	10	7.5	1	0.058	0.020	0.062	0.060	0.059	0.058

① Higher currents may be applied for shorter periods of time in accordance with the formula: $I = \sqrt{K/T}$

(Dwg. 0208A8695)

Fig. 2. Time-current characteristics of the
Hi-Seismic instantaneous unit

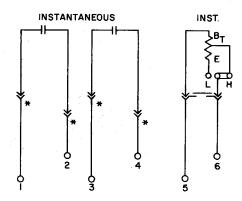
SELECTION GUIDE

Current Range (Amps)				Freq.	Number of	Model	Case Size	Appr in 1b	ox wt (kg)
Min	Max	(Hz)	(Hz) Units Number Size		Size	Net	Ship		
0.5 2.0	4.0 50		1	12HFC21B1A B2A	C 1	6 (2.7)	8 (3.6)		
0.5 2.0	4.0 50	50/60	2	12HFC22B1A B2A	C1	7 (3.2)	9 (4.0)		
0.5 2.0	4.0 50		3	12HFC23C1A C2A	C1	8 (3.6)	10 (4.5)		

REFERENCES:

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	
Relay Standards	Section 16

Overcurrent Relays

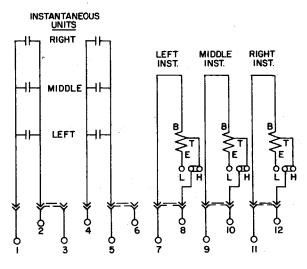


HFC

Instantaneous Overcurrent Relays

GE Protective Relays

CONNECTION DIAGRAMS

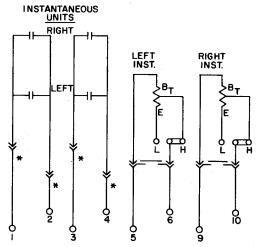

INST. SETTING

SET LINK TO "H" FOR HIGH RANGE AND TO "L" FOR LOW RANGE. LINK SHOWN IN HIGH RANGE POSITION.

* = SHORT FINGERS

(0269A3074-0)

Fig. 3. Type HFC21B Internal Connections Diagram

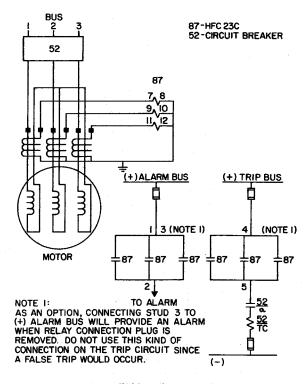


INST. SETTINGS

SET LINK TO "H" FOR HIGH RANGE AND TO "L" FOR LOW RANGE. LINK SHOWN IN HIGH RANGE POSITION.

(0285A6295-0)

Fig. 5. Internal Connections for Relay Type HFC23C



INST. SETTINGS

SET LINK TO "H" FOR HIGH RANGE AND TO "L" FOR LOW RANGE. LINK SHOWN IN HIGH RANGE POSITION.

(0275A1900-0)

Fig. 4. Type HFC22B Internal Connections Diagram

(0285A7123-0)

Fig. 6. External Connections for Type HFC23C, Self Balancing Primary Current Differential Scheme for Motor Protection

Time-overcurrent Relays

GE Protective Relays

For Time-overcurrent Protection of Ac Circuits and Apparatus WHERE TO FIND IAC MODELS

Time Current Characteristics

Inverse, Over and Under Current

Inverse Time

Very Inverse Time

Inverse, Short Time

Inverse, Long Time

Extremely Inverse Time

Inverse, Medium Time

Models of these designs

IAC 55, 56, 68, 85, 95

IAC 51, 52, 60

IAC 53, 54, 80

IAC 77, 78, 90

IAC 57

IAC 66 IAC 59

INTRODUCTION

The listing of IAC Models, on pages 11 through 15 is organized by time/current characteristics into seven tables.

To find a known model number:

- 1. See WHERE TO FIND IAC MODELS on this page to determine correct table and page.
- 2. Turn to that table for sequential listing of models.

To find a model number for a known application:

- 1. See APPLICATION, to determine time/current characteristics and/or specific application desired.
- 2. See WHERE TO FIND IAC MODELS to determine correct table and page.
- 3. Use the rating and comment columns of that table to determine Model Number with desired features.

DESCRIPTION

Type IAC relays are used in the protection of industrial and utility power systems against either phase or ground overcurrent. They are single phase (although some models contain more than one unit), non-directional, current sensitive, ac devices. The basic operating mechanism (the time unit) produces one of several available operating characteristics. The operating time is inversely related to operating current which permits close coordination with other protective devices. It consists of a magnetic core operating coil, an induction disc, damping magnet, and a mechanical target. The IAC relay may also include one or more hinged armature instantaneous overcurrent units, with integral target.

The IAC relay is mounted in a drawout case, permitting front access to the relay for testing and maintenance. Testing can be accomplished, without removing the relay, by using XLA test plugs.

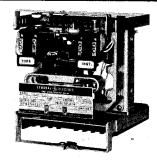
APPLICATION

IAC relays are used for protection of feeders, transmission lines, alternating current machines, transformers and for numerous other applications where a relay is required whose operating time is inversely related to operating current.

Available Inverse Time/Current Characteristics

Six inverse time/current operating characteristics are available for the time unit of the IAC (see Figure 2). The three standard time characteristics are as follows:

INVERSE TIME relays, (Table 1), are generally applied where the short-circuit current magnitude is dependent largely upon the system generating capacity at the time of the fault.


VERY INVERSE TIME relays (Table 2), are best applied on systems where the magnitude of the short circuit current flowing through any given relay is dependent mainly upon the relative location of the fault with respect to the relay and only slightly or not at all upon the system generating capacity.

EXTREMELY INVERSE TIME relays (Table 3), are intended for applications, such as on utility distribution feeders, where sufficient time delay must be provided to allow a re-energized circuit to pick up without unnecessary tripping during the inrush period, and at the same time coordinate properly with power fuses and fuse cutouts.

Three additional time characteristics are available as follows:

INVERSE SHORT TIME (Table 4), relays are used on equipments where tripping must be relatively fast but should not approach the operating time of an instantaneous unit. Protection of power rectifier equipment is an example of such an application.

INVERSE MEDIUM TIME (Table 5), relays are used as generator or transformer neutral relays or as backup protection for feeder ground faults. Also, the inverse medium time relay may be used where a slower relay is required to obtain coordination.

See

Table

3

60 Hz

2-11

2-11

2-12

2-12

2-12

2-13

See Page

50 Hz

2-14

2-14

2-14

2-15

2-15

2-15

(Photo 8041253)

Fig. 1. IAC53B single-phase overcurrent relay (out of case)

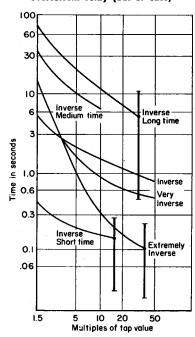


Fig. 2. Typical operating characteristics of 60 Hz Type IAC relays. The No. 5 time-dial setting is shown for each curve, and the range of time adjustment from 0.5 to 10 time-dial settings is shown for the extremely inverse, the inverse short time, and the inverse long time relays.

REFERENCES:

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16

IA

Time-overcurrent Relays

GE Protective Relays

Application (Cont'd)

INVERSE LONG TIME (Table 6), relays are designed for applications requiring long time delay. The major area of usefulness is in the protection of motors against overloads under conditions where the customary thermal devices are not applicable.

Instantaneous Unit

Instantaneous units are used to provide tripping with no intentional time delay for currents exceeding a predetermined value. Typically, if the fault current magnitude under maximum generating conditions about triples as a fault is moved toward the relay location from the far end of the line, then an instantaneous unit is desirable.

High dropout instantaneous units are available and are used together with other devices to obtain time-delay tripping. One application is motor protection, where the high dropout unit supervises the time unit for tripping during starting and overload conditions. For special feeder applications the high dropout unit can supervise the time unit to prevent the overtravel from causing undesired tripping and to permit shorter coordination margins.

Specific Applications

MOTOR PROTECTION RELAYS provide overcurrent protection for starting. overload, and fault conditions. The IAC66K relay has an inverse long time characteristic (as described above), which approximates the motor thermal limit, and two instantaneous overcurrent units. The first instantaneous unit is set above the maximum motor starting current and protects for fault conditions only. The second, a special high dropout unit, is customarily used for supervising the time overcurrent unit to permit tripping for stall and heavy overload conditions. Operation of only the time unit indicates a light or moderate overload condition and can be used as an alarm. The IAC66M relay is similar except that the high dropout instantaneous unit is used in conjunction with a 0.1 second time delay telephone relay which blocks operating during initial inrush conditions, allowing the unit to be set more sensitively.

LOAD CENTER PROTECTION The IAC66T relay, which has a static timer unit used with a high dropout instantaneous unit, is designed to protect medium voltage circuits supplying low voltage load centers. This relay coordinates with the short time and long time overcurrent trip characteristics of 600 volt air circuit breakers.

OVER AND UNDERCURRENT RELAYS (Table 7), are for use where an indication of the variation of a current between maximum and minimum limits is required. These relays do not have a time dial. The time characteristics are determined by the contact settings.

TORQUE CONTROLLED RELAYS have wound shading coils connected to terminal studs. Operation of the time-overcurrent unit thus depends on the closing of an external contact across those terminals. The overcurrent relay can be supervised by some external device, such as a directional relay.

FEATURES

Time Overcurrent

Time overcurrent units are available in several ranges to meet current pick-up settings of from 0.1 to 16 amperes. Sensitivity is determined by discrete tap-plug settings, and a time dial gives continuously adjustable time delay over the entire range. IAC model numbers which end in "8 A", such as IAC51B801A, provide an extended range of settings with a ratio of maximum setting to minimum setting of 8:1. Most other IAC relays have a ration of 4:1. The available tap settings are listed below for the common time overcurrent units:

AVAILABLE SETTINGS

Time overcurrent units with 8:1 range of settings: 0.5-4.0 amp unit—0.5, 0.6, 0.7, 0.8, 1, 1.2, 1.5, 2, 2.5, 3, and 4 amp taps 1.5-12 amp unit—1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 10, and 12 amp taps 2-16 amp unit—2, 2.5, 3, 4, 5, 6, 7, 8, 10, 12 and 16 amp taps

Other common IAC time overcurrent units:

- 0.5- 2.0 amp-0.5, 0.6, 0.8, 1, 1.2, 1.5 and 2 amp
- 0.6- 1.8 amp-0.6, 0.8, 1.0, 1.0, 1.2, 1.4, 1.6, and 1.8 amp
- 1.5- 4.5 amp-1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and 4.5 amp
- 1.5- 6.0 amp-1.5, 2, 2.5, 3, 4, 5, and 6 amp 2.5- 5.0 amp-2.5, 2.8, 3.1, 3.5, 4, 4.5 and 5 amp
- 2.5- 7.5 amp-2.5, 3.0, 3.5, 4.0, 5.0, 6.0, and 7.5 amp
- 4.0- 8.0 amp-4, 4.5, 5, 5.6, 6, 6.3, 7.1 and 8 amp
- 4.0-12.0 amp-4, 5, 6, 7, 8, 10 and 12 amp 4.0-16.0 amp-4, 5, 6, 8, 10, 12 and 16 amp

Instantaneous Overcurrent

Instantaneous overcurrent units are available in several ranges to meet current settings between 1.0 and 160 amperes. The instantaneous unit in IAC relays with model numbers ending in "8 A" has a maximum setting to minimum setting ratio of 8:1. It uses two separate windings which can be connected either in series (for low range) or in parallel (for high range) with pickup continuously adjustable over each range. The instantaneous unit used in most other IAC relays uses a single winding with a ratio of maximum to minimum setting of 4:1, with pickup continuously adjustable. These instantaneous units drop out at 40 percent or more of setting at minimum setting and 50 percent at maximum setting. High dropout units are also available which drop out at 80 percent or more of setting at minimum setting and 90 percent at maximum setting.

Except as noted in the tables the time-overcurrent unit operating coil is connected in series with the instantaneous unit operating coil if both are present, and each is set independently.

Some 4-16 amp units also have 7 amp tap.

Time-overcurrent Relays

GE Protective Relays

Target and Seal-in

Target and seal-in units, which are included with all time units except as noted in the tables of relay models, are dual rated. 0.2 and 2.0 amp taps are standard; contact factory for form numbers of other ratings available (see ratings table under "Contacts" this page.) The seal-in unit picks up to bypass the contacts of the time unit during trip circuit energization. The 2-amp tap is generally used, except where the relay contacts are used to energize auxiliary relays or other low-current devices.

CONTACTS

Each unit, time or instantaneous, has one or two output contacts (if two contacts per unit, those contacts will have one side common). Contacts of a relay with more than one unit are generally not electrically separate except as noted in the tables. An exception is the high-dropout instantaneous unit, whose contacts are electrically separate from other contacts in the relay.

The current closing rating of the contacts is 30 amperes for voltage not exceeding 250 volts. The current carrying rating of the relay is limited by the tap being used on the target and seal-in units as indicated in the following table:

Ratings of Target Seal-In Units, High Seismic (Hi-G)

	Dual Rated					
Ī	0.2/2.	0 Amp	0.6/2.	0 Amp		
	0.2	2.0	0.6	2.0		
carry 30 Amps for (sec) carry 10 Amps for (sec) carry continuously (Amp) dinimum Operating (Amp) dinimum Drop-out (Amp) c resistance (Ohms)	0.05 .45 .37 .2 .05 8.3	2.2 20.0 2.3 2.0 0.5 .24	0.5 5.0 1.2 0.6 .15	3.5 30 2.6 2.0 0.5 .18		
oc resistive nterrupting rating (Amps)	2.5 Amp@125 Vdc					

If the total tripping current exceeds 30 amperes, an auxiliary relay must be used in conjunction with IAC relays.

After tripping occurs, the tripping circuit of these relays must be opened by an "a" auxiliary switch on the circuit breaker, or by other external automatic means, because the circuit is sealed closed while tripping current is flowing. The contacts will open in 6 cycles (1/10 second) with normal adjustment of "wipe", permitting use of the relay in instantaneous reclosing schemes.

OPERATING COIL RATINGS

Note that relays with both time overcurrent and instantaneous units are limited to the lesser of the respective current ratings, since the operating coils are connected in series.

IAC relays with 8:1 range units

IIME OVE	KCUKKENI	OIVII				
	IAC51	and 52	IAC53	and 54	IAC77	and 78
Tap Setting	Taps 0.5-4.0	Taps 2-16	Taps 0.5-4.0	Taps 1.5-12	Taps 0.5-4.0	Taps 1.5-12
CONTINUOU	S-CURRENT RA	ATING				
0.5 0.6 0.7 0.8 1.0 1.2	1.6 1.8 2.0 2.1 2.3 2.7		4.0 4.5 5.0 5.5 6.0 7.0		3.5 3.7 4.0 4.5 5.0 5.5	
1.5 2.0 2.5 3.0 4.0 5.0	3.0 3.5 4.0 4.5 5.0	8 9 10 12 14	7.5 9.0 10.0 11.0 12.0	10 11.5 13.0 14.5 17.0 19.0	6.0 7.0 8.0 9.0 10.0	9.5 10.5 11.5 12.5 14.0 15.5
6.0 7.0 8.0 10.0 12.0 16.0		15 16 17.5 20 20 20		20.0 20.0 20.0 20.0 20.0 20.0	-	17.0 18.0 19.0 20.0
NE-SECOND	RATING					-
All	70 Amps	260 Amps	140 Amps	260 Amps	125 Amps	260 Amp

INSTANTANEOUS UNIT

Instantaneous	Connection of Instantaneous		Continuous	One-second	
Unit Range	Unit — High or Low Range		Rating	Rating	
Olli Kunge	Oliii — High	or Low Kunge	Amperes		
0.5-4.0	Low 0.5-2.0		0.75	25	
	High 1.0-4.0		1.50	50	
2-16	Low	2-8	3.0	130	
	High	4-16	6.0	260	
10-80	Low	10-40	15.0	400	
	High	20-80	25.0	600	
20-160	Low	20-80	25.0	600	
	High	40-160	25.0	600	

Low range refers to coils connected in series. High Range refers to coils connected in parallel.

IAC relays with 4:1 range units TIME-OVERCURRENT UNIT

Time Unit Range	One-second Rating	Continuous Rating ① ②
Time Onli Range	Ar	nperes
4-16 Amp IAC51, 52, 53, 54, 77, 78	260	10
1.5-6 Amp		
IAC51, 52	215	5
IAC53, 54	260	5
IAC77, 78	200	6
0.5-2 Amp		
IAC51, 52	70	1.5
IAC53, 54	130	1.5
IAC77, 79	65	3

CASE SIZES AND APPROXIMATE WEIGHTS

JAC Belevittedel	Case	Net	Shipping
IAC Relay Model	Size	Weigh	t (Lbs.)
51N, 66T 66M, 80P 60T, 80T, 90T All others listed	\$2 M1 L2 \$1	12(5.4) 18(8.2) 18(8.2) 12(5.4)	18(8.2) 28(12.7) 28(12.7) 18(8.2)

- The continuous rating of the coil circuit applies to all Time Unit taps up to, and including, the value of the rating. For taps above this value, the rating is the same as the tap value.
- ② Continuous ratings of relays having instantaneous units is the value shown or 1.5 times the minimum setting of the instantaneous units, whichever is the lower of the two values.

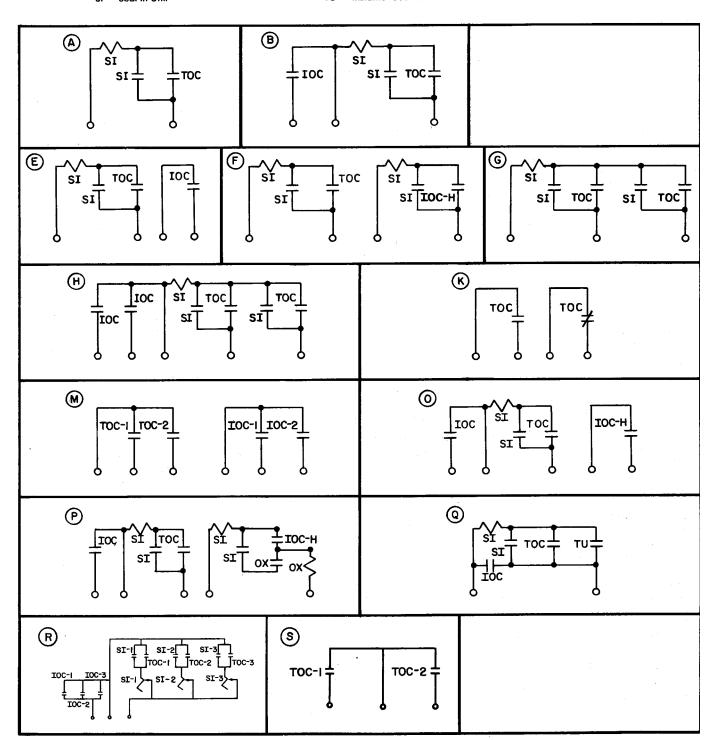
Time-overcurrent Relays

GE Protective Relays

SIMPLIFIED OUTPUT CONTACT ARRANGEMENTS

As referenced in tables, pages 2-11 through 2-15.

LEGEND:


TOC = Time Overcurrent Unit

IOC = Instantaneous Unit

SI = Seal-in Unit

IOC-H = Instantaneous Unit - Hi-Dropout

OX = Auxiliary Relay
TU = Instantaneous Unit with Timer

Time-overcurrent Relays

GE Protective Relays

ZΛ	HEF	TT	A.A	_		EI	c
OU	REF		IVI	·	v	EI	.3

Model Number	Time Over- Current Unit Range (amps)	instant. Unit Range (amps)	No. of Contacts Per Unit	Comments	Model Number	Time Over- Current Unit Range (amps)	Instant. Unit Range (amps)	No. of Contacts Per Unit	Comments
Table 1. Inv	erse T	ime Cl	naracte	eristic Relays					
12IAC51A801A A802A	0.5-4 2-16		1 N.O. \$ee(A) page 2-10		12IAC52A801A A802A	0.5-4 2-16		2 N.O. See © page 2-10	
12IAC51B801A B802A B803A B804A B805A B806A B807A B808A	0.5-4 2-16 0.5-4 2-16 0.5-4 2-16 0.5-4 2-16	0.5-4 0.5-4 2.0-16 2.0-16 10-80 10-80 20-160 20-160	1 N.O. See ® page 2-10		12IAC52B801A B802A B803A B804A B805A B806A B807A B808A	0.5-4 2-16 0.5-4 2-16 0.5-4 2-16 0.5-4 2-16	0.5-4 0.5-4 2-16 2-16 10-80 10-80 20-160 20-160	2 N.O. See (H) page 2-10	
12IAC51N 7A	1.5-6		1 N.O.	Dc Control Volts 125 Includes auxiliary	12IAC60A12A A15A A111A	1.5-6 0.5-2 4-16		1 N.O. See (A) page 2-10	Torque controlled time unit will operate only when an external contact (wired to shading coil) is closed.
N 8A N13A N14A N16A N17A N101A N102A N111A	1.5-6 1.5-6 0.5-2 0.5-2 1.5-6 1.5-6 4-16 4-16		See (A) page 2-10	125 250 125 differential pro- tection and for checking CT 48 125 250 48	12IAC60B11A B13A B15A B16A B20A B21A B112A B114A	1.5-6 1.5-6 1.5-6 0.5-2 1.5-6 2-8 4-16 4-16	4-16 10-40 2-8 4-16 20-80 10-40 20-80 10-40	1 N.O. See ® page 2-10	Similar to IAC60A with instantaneous unit.
12IAC51V2A V3A V5A	1.5-6 1.5-6 0.5-2	10-30 4-12	1 N.O. See F	High dropout instantaneous unit. Two target	B115A	4-16	4-16		Dc Control
V3A V6A V101A V104A V105A V106A	0.5-2 1.5-6 4-16 4-16 4-16 0.5-2	2-6 2-6 10-30 4-12 20-60 10-30	page 2-10	seal-in units.	12IAC60T1A T2A T3A	2 Units 0.5-4 2-16 0.5-4	2 Units 2-50 2-50 2-50	1 N.O. See (M) page 2-10	Dc Control Volts 48/125 Has two PJC 48/125 instantaneous units. No target seal-in units.
Table 2. Ve	ry Inv	erse Ti	me Ch	aracteristic Relays	\$,
12IAC53A10A A19A A801A A803A	0.1-0.4 0.15-0.6 0.5-4.0 1.5-12		1 N.O. See (A) page 2-10		121AC54A10A A801A A803A	0.1-0.4 0.5-4 1.5-12		2 N.O. See (G) page 2-10	
12IAC53832A B34A B38A B50A B50A B76A B78A B801A B803A B805A B805A B809A B8110A	0.1-0.4 0.15-0.6 0.1-0.4 0.1-0.4 0.1-0.4 0.1-0.4 0.5-4 0.5-4 0.5-4 1.5-12 1.5-12	1-4 10-40 0.5-2 4-16 10-40 2-8 20-80 0.5-4 2-16 10-80 20-160 0.5-4 2-16	1 N.O. See ® page 2-10		12IAC548801A	0.5-4 0.5-4 0.5-4 0.5-4 1.5-12 1.5-12 1.5-12 0.1-0.4	0.5-4 2-16 10-80 20-160 0.5-4 2-16 10-80 20-160 4-16	2 N.O. See (II) page 2-10	
12IAC53M3A M4A	1.5-12 1.5-6 0.5-2	20-160 10-30 1-3 2-6	1 N.O. See F	High dropout instantaneous unit. Two target	12IAC80L1A L2A L3A	4-16 1.5-6 0.5-2		1 N.O. See (A) page 2-10	Torque controlled time unit will operate only when an external contact (wired to shading coil) is closed.
M5A M6A M7A M9A M10A M11A	0.5-2 1.5-6 1.5-6 0.5-2 0.5-2 1.5-6	2-6 4-12 2-6 4-12 0.5-1.5 0.5-1.5	page 2-10	seal-in units.	12IAC80P1A	2 Unit 4-16		1 N.O.	Dc Control Volts 125/250 Similar to
12IAC53M101A M102A M103A	4-16 4-16 4-16	4-12 10-30 20-60	1 N.O. See (F) page 2-10	High dropout instantaneous unit. Two target seal-in units.	P2A P3A	1.5-6 4-16		per unit See (S) page 2-10	125/250 IAC80L except 48/125 two units.
12IAC53T801A T802A T803A T804A T805A T806A T807A T808A	0.5-4 0.5-4 0.5-4 0.5-4 1.5-12 1.5-12 1.5-12	0.5-4 2-16 10-80 20-160 0.5-4 2-16 10-80 20-160	1 N.O. See (E) page 2-10	Time unit and instantaneous unit contacts are electrically separate.	12IAC80T1A T2A	2 Units 0.5-4 1.5-12	2 Units 2-50 2-50	1 N.O. per unit See (M) page 2-10	Volts 48/125 48/125 Has two PJC instantaneous units. No target seal-in units.

Time-overcurrent Relays

GE Protective Relays

60	HERTZ	MODELS	
~~			

Model Number	Time Over- Current Unit Range (amps)	Instant. Unit Range (amps)	No. of Contacts Per Unit	Comments	Model Number	Time Over- Current Unit Range (amps)	Instant. Unit Range (amps)	No. of Contacts Per Unit	Comments
Table 3. Ex	tremely	Inve	se Tin	ne Characteristic	Relays				
12IAC77A15A A801A A803A	0.1-0.4 0.5-4 1.5-12		1 N.O. See(A) page 2-10		12IAC78A7A A801A A803A	0.1-0.4 0.5-4 1.5-12		2 N.O. See (G page 2-10	
12IAC77B 55A B 57A B 60A B 69A B 71A B 801A B 803A B 805A B 807A	0.1-0.4 0.1-0.4 0.1-0.4 0.1-0.4 0.1-0.4 0.1-0.4 0.5-4 0.5-4	4-6 0.5-2 2-8 20-80 1-4 10-40 0.5-4 2-16 10-80 20-160	1 N.O. See ® page 2-10		12IAC78B801A B803A B805A B807A B807A B810A B811A B811A	0.5-4 0.5-4 0.5-4 0.5-4 1.5-12 1.5-12 1.5-12	0.5-4 2-16 10-80 20-160 0.5-4 2-16 10-80 20-160	2 N.O. See (H) page 2-10	
B809A B810A B811A B812A	1.5-12 1.5-12 1.5-12 1.5-12	0.5-4 2-16 10-80 20-160			12IAC90B1A B2A	1.5-6 0.5-2	10-40 4-16	1 N.O. See (B) page 2-10	Torque controlled time unit will operate only when an external contact (wired to shading coil) is closed.
12IAC77M3A M4A M5A	4-16 4-16 1.5-6	4-12 10-30 2-6	1 N.O. See (F) page 2-10	High dropout instantaneous unit. Two target seal-in units.					De Controi Volts
					12IAC90T1A T2A	2 Units 0.5-4 1.5-12	2 Units 2-50 2-50	1 N.O. per unit See M page 2-10	Has two PJC instantaneous 48/125 units. No target seal-in units.
Table 4. Inv	erse, S	hort T	ime C	haracteristic Rela	ys				
12IAC55A2A A3A A101A	1.5-6 0.5-2 4-16		1 N.O. See (A) page 2-10		12IAC55B104A B115A B121A	4-16 4-16 4-16	20-80 4-16 40-160		
12IAC55B2A B3A B9A B10A B17A B19A	1.5-6 0.5-2 1.5-6 0.5-2 0.5-2 1.5-6	10-40 10-40 4-16 4-16 2-8 20-80	1 N.O. See B page 2-10		12IAC55F1A F2A F3A F4A F6A F7A	4-16 1.5-6 4-16 1.5-6 0.5-2 1.5-6	4-16 4-16 0.5-2 1.5-6 0.5-2 2-8	1 N.O. See B page 2-10	Time unit and instantaneous u coil leads are brought out to separate studs.
B20A B25A B101A	1.5-6 0.5-2 4-16	2-8 1-4 10-40			12IAC95F1A	1.5-6	1.5-5	1 N.O. See (E) page 2-10	Moderately short-time characteristic. Low burden.
Table 5. Inv	verse, 1	Mediu	n Time	Characteristic R	elays				
12IAC57A2A A3A A101A	1.5-6 0.5-2 4-16		1 N.O. See (A) page 2-10		12IAC57B2A B3A B10A B13A B101A B104A	1.5-6 0.5-2 1.5-6 1.5-6 4-16 4-16	10-40 10-40 20-80 4-16 10-40 20-80	1 N.O. See (B) page 2-10	
Table 6. Inv	erse, L	ong T	ime Cl	aracteristic Relay	ys .				
12IAC66A51A A52A A53A	0.6-1.8 1.5-4.5 4-12		1 N.O. See (A) page 2-10				٠,		Hi Drop- out Instan- taneous
12IAC66B51A B52A B53A B54A B55A B56A B57A	0.6-1.8 1.5-4.5 4-12 0.6-1.8 1.5-4.5 4-12 4-12	2-16 2-16 2-16 10-80 10-80 10-80 20-160	1 N.O. See ® page 2-10		12IAC66K51A K52A K53A K55A K56A K57A K58A K59A K60A K64A K64A	0.6-1.8 0.6-1.8 1.5-4.5 1.5-4.5 1.5-4.5 1.5-4.5 1.5-4.5 1.5-4.5	2-16 2-16 10-80 2-16 2-16 10-80	1 N.O. See (0) page 2-10	1-4 10-40 units, one standard and one 2-8 10-40 2-8 4-16
12IAC66C51A C52A C53A C54A C55A C56A C57A	0.6-1.8 1.5-4.5 4-12 0.6-1.8 1.5-4.5 4-12 1.5-4.5	2-16 2-16 2-16 10-80 10-80 10-80 0.5-4	1 N.O. See (E) page 2-10	Time unit and instantaneous unit contact leads are brought out separately.	K59A K60A K64A K65A K67A K68A K69A K70A	1.5-4.5 1.5-4.5 4-12 4-12 4-12 4-12 4-12 4-12	10-80 20-160 2-16 10-80 10-80 10-80 10-80 20-160		10-40 4-16 10-40 2-8 4-16 10-40 20-80 4-16

Time-overcurrent Relays

GE Protective Relays

60 H	HERTZ	M	OD	ELS	í
------	-------	---	----	-----	---

Model Number	Time Over- Current Unit Range (amps)	Instant. Unit Range (amps)	No. of Contacts Per Unit	Comments	Model Number	Time Over- Current Unit Range (amps)	Instant. Unit Range (amps)	No. of Contacts Per Unit	Comments
-----------------	---	-------------------------------------	--------------------------------	----------	-----------------	---	-------------------------------------	--------------------------------	----------

Table 6. Inverse, Long Time Characteristic Relays (Con't)

				Hi Drop- out Instan- taneous	Dc Control Voltage						Hi Drop- out Instan- taneous	Dc Control Voltage	Two instan- taneous units:
12IAC66M51A M52A M53A M54A M55A M55A M57A M58A M59A M61A M61A M62A	1.5-4.5 1.5-4.5 1.5-4.5 1.5-4.5 1.5-4.5 1.5-4.5 4-12 4-12 4-12 4-12 4-12 4-12	2-16 10-80 10-80 10-80 10-80 20-160 2-16 10-80 10-80 10-80 20-160	1 N.O. See (P) page 2-10	4-16 2-8	18/125/	Two instantaneous units; One standard, one high drop- out. Two seal-in units. Aux. telephone relay for 0.1 sec time delay pick up of high dropout unit.	12IAC66T51A 152A 153A 154A 155A 156A 157A	1.5-4.5 1.5-4.5 2.5-7.5 2.5-7.5 4-12 4-12 4-12	10-80 20-160 10-80 10-80 10-80 20-160	page 2-10	7-28 4-16 7-28 10-40 10-40 4-16 10-40	3/110-125/220-25	one standard, one high drop- out. Static time delay on high dropout unit adjustable from 0.05-3.0 seconds, except for IAC66S2A which has 0.03-1 second range.

Table 7. Inverse Time, Over- and Undercurrent Relays

12IAC59C1A C2A C103A	0.5-2 1.5-6 4-16	1 1	1 N.O. 8 1 N.C. See (S) page 2-10	No target seal-in unit.	
----------------------------	------------------------	-----	---	-------------------------	--

Time-overcurrent Relays

GE Protective Relays

50 HERTZ	MODELS
----------	--------

50 HERTZ N	VODEL	>										
Model Number	Time Over- Current Unit Range (amps)	Instant. Unit Range (amps)	No. of Contacts Per Unit		Comments	Model Number	Time Over- Current Unit Range (amps)	Instant. Unit Range (amps)	No. of Contacts Per Unit	Comments		
Table 1. Inv	erse T	ime Ch	aracte	eristic	Relays							
12IAC51A804A A805A	0.5-4 2-16		1 N.O. See (A) page 2-10	50 Hertz	models.	12IAC51V102A	4-16	10-30	1 N.O. See (F) page 2-10	50 Hertz model. High dropout instantaneous unit. Two target seal-in units		
12IAC51B821A B822A B823A	0.5-4 2-16 0.5-4	0.5-4 0.5-4 2-16	1 N.O. See ®	50 Hertz models.		12IAC52A804A A805A	0.5-4 2-16		2 N.O. See (G) page 2-10	50 Hertz models.		
8823A 8824A 8825A 8825A 8827A 8827A	0.5-4 2-16 0.5-4 2-16 0.5-4 2-16	2-16 2-16 10-80 10-80 20-160 20-160	page 2-10					12IAC52B821A B822A B823A B824A B825A B826A B827A	0.5-4 2-16 0.5-4 2-16 0.5-4 2-16	0.5-4 0.5-4 2-16 2-16 10-80 10-80	2 N.O. See (H) page 2-10	50 Hertz models.
				Dc Contro	1	8827A 8828A	0.5-4 2-16	20-160 20-160				
12IAC51N9A N10A N18A N103A N104A	1.5-6 1.5-6 0.5-2 4-16 4-16		1 N.O. See (A) page 2-10	125 250 125 125 125 250	50 Hertz models. Includes auxiliary relay for bus differential	12IAC60A14A A16A A113A	0.5-2 1.5-6 4-16		1 N.O. See (A) page 2-10	50 Hertz models. Torque controlled time unit will operate only when an external contact (wired to shading coil) is closed.		
N104A N119A	4-16 4-16			48 48	protection and for checking CT secondary circuit.	12IAC60B117A B118A B119A	4-16 4-16 4-16	10-40 4-16 20-80	1 N.O. See ® page 2-10	50 Hertz models. Similar to IAC60A with instantaneous unit.		
Table 2. Ve	ry Inv	erse Ti	me Ch	aracte	ristic Relays	;						
12IAC53A801A 803A	0.5-4 1.5-12		1 N.O. See (A) page 2-10	50 Hertz models		12IAC54A801A A803A	0.5-4 1.5-12		2 N.O. See ⑤ page 2-10	50 Hertz models		
12IAC53861A 8801A 8803A 8805A 8807A 8810A 8811A 8812A	0.1-0.4 0.5-4 0.5-4 0.5-4 0.5-4 1.5-12 1.5-12 1.5-12 1.5-12	4-16 0.5-4 2-16 10-80 20-160 0.5-4 2-16 10-80 20-160	1 N.O. See B page 2-10	50 Hertz m	nodels.	12IAC54B801A B803A B805A B807A B809A B810A B811A B812A B813A	0.5-4 0.5-4 0.5-4 1.5-12 1.5-12 1.5-12 1.5-12 0.1-0.4	0.5-4 2-16 10-80 20-160 0.5-4 2-16 10-80 20-160 4-16	2 N.O. See (H) page 2-10	50 Hertz models		
12IAC53T801A T802A T803A T804A T805A T806A T807A T808A	0.5-4 0.5-4 0.5-4 1.5-12 1.5-12 1.5-12 1.5-12	0.5-4 2-16 10-80 20-160 0.5-4 2-16 10-80 20-160	1 N.O. See © page 2-10		nd instantaneous unit e electrically	12IACB0L4A	4-16		1 N.O. See (A) page 2-10	50 Hertz model torque controlled time unit will operate only when an external contact (wired to shading coil) is closed.		
Table 3. Ex	tremel	y Invei	se Tin	ne Cha	racteristic R	elays						
12IAC77A804A A805A	0.5-4 1.5-12		1 N.O. See (A) page 2-10	50 Hertz m		12IAC78A804A A805A	0.5-4 1.5-12		2 N.O. See ©	50 Hertz models		
12IAC77858A 8821A 8822A 8823A 8823A 8825A 8825A 12IAC778827A 8828A	0.02-0.08 0.5-4 1.5-12 0.5-4 1.5-12 0.5-4 1.5-12 0.5-4 1.5-12	0.04-0.16 0.5-4 0.5-4 2-16 2-16 10-80 10-80 20-160	1 N.O. See (B) page 2-10	50 Hertz n		12IAC78B821A B822A B823A B823A B825A B826A B826A	0.5-4 1.5-12 0.5-4 1.5-12 0.5-4 1.5-12 0.5-4 1.5-12	0.5-4 0.5-4 2-16 2-16 10-80 10-80 20-160	2 N.O. See (H) page 2-10	50 Hertz models		
12IAC77S823A S826A	3 Units 0.5-4 1.5-12	3 Units 2-16 10-80	1 N.O. per unit See ® page 2-10	50 Hertz n	nodels	8828A	1.5-12	20-160				

Time-overcurrent Relays

GE Protective Relays

50 HERTZ MODELS

Model Number	Time Over- Current Unit Range (amps)	Instant. Unit Range (amps)	No. of Contacts Per Unit		Model Number	Time Over- Current Unit Range (amps)	Instant. Unit Range (amps)	No. of Contacts Per Unit	Comments
-----------------	---	-------------------------------------	--------------------------------	--	-----------------	---	-------------------------------------	--------------------------------	----------

Table 4. Inverse, Short Time Characteristic Relays

12IAC55A5A A6A A104A	1.5-6 0.5-2 4-16		1 N.O. See (A) page 2-10	50 Hertz models.	12IAC55F5A	4-16	4-16	1 N.O. See ® page 2-10	50 Hertz models. Time unit and instantaneous unit coil leads are brought out to separate studs.
21AC55B6A B7A B14A B22A B105A B108A B122A	1.5-6 0.5-2 0.5-2 0.5-2 4-16 4-16	10-40 10-40 4-16 2-8 10-40 20-80 4-16	1 N.O. See ® page 2-10	50 Hertz models.	12IAC95F1A	1.5-6	1.5-5	1 N.O. See © page 2-10	Moderately short-time characteristic. Low burden.

Table 5. Inverse, Medium Time Characteristic Relays

121AC57A6A	0.5-2	 1 N.O.	50 Hertz models.	ΤŤ	12IAC57B6A	1.5-6	10-40	1 N.O.	50 Hertz models.
A8A	1.5-6	 See (A)	SO FIGHZ MODELS.		B7A.	0.5-2	10-40	See ®	30 Herrz models.
A104A	4-16	 page 2-10		П	. B11A	1.5-6		page 2-10	
				Н	B105A	4-16	10-40		
				H	B108A	4-16	20-80		

Table 6. Inverse, Long-time Characteristic Relays

12IAC66A54A A55A	0.6-1.8 1.5-4.5		1 N.O. See (8)	50 Hertz mod	els.	DC Control	Voltage 4	8/125/250		Hi-Dropout Instantaneous	
A56A 12IAC66B58A B59A B60A	4-12 0.6-1.8 1.5-4.5 4-12	2-16 10-80 10-80	1 N.O. See ® page 2-10	50 Hertz mod	els.	12IAC66M63A M64A M65A M67A	1.5-4.5 1.5-4.5 4-12 4-12	10-80 20-160 10-80 20-160	1 N.O. See ® page 2-10	20-80 20-80 20-80 20-80 20-80	Two instanta neous units: one standard and one high drop
12IAC66C58A C59A C60A	0.6-1.8 1.5-4.5 4-12	2-16 10-80 10-80	1 N.O. See © page 2-10	instantaneous (els. Time unit and unit coil leads are separate studs.		·				out. Two seal-i units. Aux. tele phone relay fo
				Hi-Dropout Instantaneous		:					0.1 sec time delay pickup o high dropout.
12IAC66K54A K61A K62A K63A K71A K72A	0.6-1.8 1.5-4.5 1.5-4.5 1.5-4.5 4-12 4-12	10-80 10-80 10-80 20-160 10-80 20-160	1 N.O. See © page 2-10	2-8 2-8 4-16 4-16 4-16 4-16	50 Hertz models. Two instanta- neous units: one standard and one high drop- out.					. ".	

Table 7. Inverse Time, Over- and Undercurrent Relays

12IAC59C4A	0.5-2	₹		50 Hertz models. No target	Т		_
C5A C106A	1.5-6 4-16		N.C. See ®	seal-in unit.			
	7-10		page 2-10				

Time-overcurrent Relays

GE Protective Relays

SUBSTITUTION LIST FOR IAC RELAYS, arranged in order of Superseded Models (60 Hz only, drawout case mounting)

Previo	us Model			rseding 10 Model		Previo	us Model		Superseding IAC 800 Model			
Model Number	Time Over- Current Unit Range (amps)	Instant. Unit Range (amps)	Model Number	Time Over- Current Unit Range (amps)	Instant. Unit Range (amps)	Model Number	Time Over- Current Unit Range (amps)	Instant. Unit Range (amps)	Model Number	Time Over- Current Unit Range (amps)	Instan Unit Range (amps	
12IAC51A 2A 3A 101A	1.5-6 .5-2 4-16		12IAC51A801A 801A 802A	.5-4 .5-4 2-16		12IAC53B113A 120A 127A	4-16 4-16 4-16	4-16 7-28 40-160	12IAC53B810A 811A 812A	1.5-12 1.5-12 1.5-12	2-16 10-80 20-16	
12IAC51B 2A 3A 17A 18A 19A	1.5-6 .5-2 1.5-16 .5-2 1.5-6	10-40 10-40 4-16 4-16 2-8	121AC51B805A 805A 803A 803A 803A	.5-4 .5-4 .5-4 .5-4	10-80 10-80 2-16 2-16 2-16	129A 12IAC54A 2A 3A 101A	4-16 1.5-6 .5-2 4-16	2-8	810A 12IAC54A803A 801A 803A	1.5-12 1.5-12 .5-4 1.5-12	2-16	
22A 23A 33A 35A	.5-2 1.5-6 .5-2 1.5-6	2-8 40-160 1-4 20-80	803A 807A 801A 805A	.5-4 .5-4 .5-4 .5-4	2-16 20-160 .5-4 10-80	12IAC54B 2A 3A 13A 16A 20A	1.5-6 .5-2 .5-2 1.5-6 .5-2	10-40 10-40 4-16 20-80 2-8	12IAC54B811A 805A 803A 811A 803A	1.5-12 .5-4 .5-4 1.5-12 .5-4	10-80 10-80 2-16 10-80 2-16	
37A 43A 58A 65A 101A	1.5-6 .5-2 .5-2 1.5-6 4-16	1-4 20-80 5-2 5-2 10-40	801A 805A 801A 801A 806A	.5-4 .5-4 .5-4 .5-4 2-16	.5-4 10-80 .5-4 .5-4 10-80	21A 23A 101A 104A 122A	1.5-6 1.5-6 4-16 4-16 4-16	4-16 2-8 10-40 20-80 4-16	810A 810A 811A 811A 810A	1.5-12 1.5-12 1.5-12 1.5-12 1.5-12	2-16 2-16 10-80 10-80 2-16	
104A 113A 116A 149A	4-16 4-16 4-16 4-16	20-80 40-160 4-16 2-8	806A 808A 804A 804A	2-16 2-16 2-16 2-16	10-80 20-160 2-16 2-16	124A 12IAC77A 11A 12A 13A	4-16 1.5-6 .5-2	40-160	812A 12IAC77A803A 803A 801A	1.5-12 1.5-12 1.5-12 .5-4	20-16	
12IAC52A 2A 3A 101A	1.5-6 .5-2 4-16		12IAC52A801A 801A 802A	.5-4 .5-4 2-16		12IAC77B 31A 32A 33A	4-16 1.5-6 .5-2	10-40 10-40 10-40	12IAC77B811A 811A 805A	1.5-12 1.5-12 .5-4	10-80 10-80 10-80	
12IAC52B 2A 3A 14A 15A 17A	1.5-6 .5-2 1.5-6 .5-2 .5-2	10-40 10-40 4-16 4-16 2-8	12IAC52B805A 805A 803A 803A 803A	.5-4 .5-4 .5-4 .5-4	10-80 10-80 2-16 2-16 2-16	34A 35A 36A 37A	4-16 4-16 1.5-6	20-80 4-16 40-160 2-8	811A 810A 812A 810A	1.5-12 1.5-12 1.5-12 1.5-12	10-80 2-16 20-16 2-16	
19A 101A 104A 113A	1.5-6 4-16 4-16 4-16	20-80 10-40 20-80 4-16	805A 806A 806A 804A	.5-4 2-16 2-16 2-16	10-80 10-80 10-80 2-16	38A 39A 40A 45A 46A	1.5-6 1.5-6 .5-2 .5-2 1.5-6	1-4 4-16 4-16 1-4 20-80	809A 810A 803A 801A 811A	1.5-12 1.5-12 .5-4 .5-4 1.5-12	.5-4 2-16 2-16 .5-4 10-86	
12IAC53A 2A 3A 101A 12IAC53B 2A	1.5-6 .5-2 4-16 1.5-6	10-40	12IAC53A803A 801A 803A 12IAC53B811A	1.5-12 .5-4 1.5-12 1.5-12	10-80	47A 49A 50A	.5-2 .5-2 .5-2	2-8 20-80 40-160	803A 805A 807A	.5-4 .5-4 .5-4	2-16 10-86 20-16	
3A 9A 10A 12A	.5-2 .5-2 .5-2 .5-2	10-40 2-8 4-16 2-8	805A 803A 803A 810A	.5-4 .5-4 .5-4 1.5-12	10-80 10-80 2-16 2-16 2-16	51A 56A 59A 12IAC78A 4A	4-16 1.5-6 1.5-6 4-16	2-8 40-160 1.5-6	810A 812A 810A 12IAC78A803A	1.5-12 1.5-12 1.5-12 1.5-12	2-16 20-16 2-16	
14A 21A 23A 25A	1.5-6 1.5-6 .5-2 .5-2	4-16 7-28 20-80 1-4	810A 811A 805A 801A	1.5-12 1.5-12 1.5-12 .5-4	2-16 10-80 10-80 .5-4	5A 6A 12IAC78B 11A 12A	1.5-6 .5-2 4-16 1.5-6	10-40 10-40	803A 801A 12IAC78B811A 811A	1.5-12 .5-4 1.5-12 1.5-12	10-80	
26A 33A 35A	1.5-6 1.5-6 .5-2	20-80 1-4 5-2	811A 809A 801A	1.5-12 1.5-12 .5 ₄	10-80 .5-4 .5-4	13A 14A 15A 16A	.5-2 4-16 4-16 1.5-6	10-40 20-80 4-16	805A 811A 810A 810A	.5-4 1.5-12 1.5-12 1.5-12	10-80 10-80 2-10	
52A 65A 101A 104A	1.5-6 .5-2 4-16 4-16	40-160 40-160 10-40 20-80	812A 807A 811A 811A	1.5-12 .5-4 1.5-12 1.5-12	20-160 20-160 10-80 10-80	17A 18A	1.5-6 1.5-6	2-8 20-80	810A 811A	1.5-12 1.5-12	2-16 10-80	

IFC

Time-overcurrent Relays

GE Protective Relays

For Time-overcurrent Protection of Ac Circuits and Apparatus

INTRODUCTION

Type IFC relays, the newest time-overcurrent relay family, feature smaller size, visible CT shorting, improved testing and extended time and instantaneous current ranges. The IFC is available in 50 and 60 Hertz models with the following time-current characteristics:

- Inverse
- Very Inverse
- Extremely Inverse
- Inverse Long Time
- Inverse Medium Time
- Inverse Short Time

An instantaneous overcurrent unit is optional.

DESCRIPTION

Type IFC relays are used for the protection of industrial and utility power systems against either phase or ground overcurrent. They are single-phase, non-directional, current sensitive ac devices. The basic operating mechanism (the time unit) produces one of several available operating characteristics with operating time inversely related to operating current to permit coordination with other protective devices. It consists of a magnetic-core operating coil, an induction disk, damping magnet, and a mechanical target. The IFC relay may also include a hinged-armature instantaneous overcurrent unit with its own target.

The IFC relay is mounted in a drawout case, permitting front access with the cover off or removal from the case for testing and maintenance. The drawout element consists of a one-piece, molded support structure on which relay subassemblies are mounted. The case—also a one-piece, glass-filled polyester molding — is suitable for either semi-flush or surface mounting. The cover is completely transparent, permitting visual inspection of the relay and determination of CT shorting bar and relay target position.

The time-overcurrent unit has a pickup current range of 0.5-4 amperes or 1-12 amperes. The associated target and seal-in unit is dual rated for 0.2 or 2 amperes, and has high seismic capability.

The instantaneous unit is a hinged-armature relay with high seismic capability. A sliding link selects the upper or lower portion of the 2-50 ampere or 6-150 ampere range of setting adjustment.

APPLICATION

IFC relays are used for protection of feed-

ers, transmission lines, alternating current machines, transformers and for numerous other applications where an operating time inversely related to operating current is required.

Six inverse time/current operating characteristics are available with the IFC (see Figure 2), as follows:

extremely inverse time relays (IFC77) are intended for applications, such as on utility distribution feeders, where sufficient time delay must be provided to allow a reenergized circuit to pick up without unnecessary tripping during the inrush period, and at the same time coordinate properly with power fuses and fuse cutouts.

VERY INVERSE TIME relays (IFC53) are best applied on systems where the magnitude of the short circuit current flowing through any given relay is dependent mainly upon the relative location of the fault with respect to the relay and only slightly or not at all upon the system generating capacity.

INVERSE TIME relays (IFC51) are generally applied where the short-circuit current magnitude is dependent largely upon the system generating capacity at the time of the fault.

INVERSE LONG TIME (IFC66) relays are designed for applications requiring long time delay. One major application is in the overcurrent protection of large motors.

MOTOR PROTECTION RELAYS provide overcurrent protection for starting, overload, and fault conditions. The IFC66K relay has an inverse long time characteristic (as described above) which approximates the motor thermal limit, and two instantaneous overcurrent units. The first instantaneous unit is set above the maximum motor starting current and protects for fault conditions only. The second, a special high dropout unit, is customarily used for supervising the time overcurrent unit to permit tripping for stall and heavy overload conditions. Operation of only the time unit indicates a light or moderate overload condition and can be used as an alarm.

INVERSE MEDIUM TIME (IFC57) relays are used as generator or transformer neutral relays or as backup protection for feeder ground faults. Also, the inverse medium time relay may be used where a slower relay is required to obtain coordination.

Fig. 1. IFC51B overcurrent relay

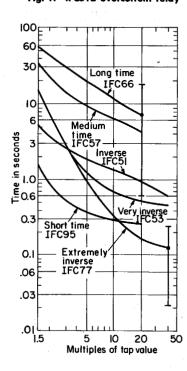


Fig. 2. Typical operating characteristics at 60 Hz Type IFC relays. The No. 5 time-dial setting is shown for each curve, and the range of time adjustment from 0.5 to 10 time-dial settings is shown for the extremely inverse, and the inverse long time relays.

REFERENCES:

Dimensions	. Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16

IFC

Time-overcurrent Relays

GE Protective Relays

APPLICATION (Cont'd)

INVERSE SHORT TIME (IFC95) relays are used on equipments where tripping must be relatively fast but should not approach the operating time of an instantaneous unit.

DESIGN FEATURES

SMALLER SIZE—The IFC is smaller in both height and width than the IAC and takes up 25 percent less panel space.

LOWER INVENTORY—Relay selection is simpler and there are fewer models to stock due to the IFC's extended time and instantaneous ranges.

EASIER MAINTENANCE—All live parts are recessed. CT shorting contacts are located at the front and are clearly visible. Case and relay support structure are molded from insulating glass-filled polyester. The IFC is recognized under the Component Program of Underwriters' Laboratories, Inc.

IMPROVED TESTING—The connection feature and test probes make IFC testing easier and more flexible. Time-current characteristics are not changed by removing the relay from its case. See appropriate handbook section for information on test probes and plugs.

RETAINS IAC FEATURES—IFC relays use the simple, reliable induction disk principle in a fully-drawout construction. External terminal connections are identical. Performance characteristics and application criteria are the same.

SEALED CASE—A one-piece, seamless molded case with hooded flange and positive gasket seal provides superior protection in dirty or corrosive environments.

HIGH-SEISMIC CAPABILITY—Seismic Fragility Level exceeds maximum acceleration of 4g ZPA (10g peak) when tested using a biaxial, multi-frequency input.

SELECTION GUIDE — 0.2/2.0 Amp Target and Seal-in

Rati	ings			Mode	Number				Appr	ox. Wt.
Time Unit	Instan- taneous Unit	Inverse Time IFC51	Very Inverse Time IFC53	Extremely Inverse Time IFC77	Short Time IFC95	Medium Time IFC57	Long Time IFC66	Case Size	in I	b (kg) Ship
60 HERTZ,		ontact	1	11 677		1				
0.15-1.2 0.5-4 2.5-7.5 1-12 0.5-4 1-12 1-12 2.5-7.5	2-50 2-50 6-150 6-150	12IFC51A2A A1A B2A B1A	12IFC53A6A A2A A1A B2A B3A B1A	12IFC77A2A A1A B2A B3A B1A			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
0.5-4.0 0.5-4.0 0.5-4.0 0.5-4.0 1-12 1-12 1-12 1-12	2-8① 4-16① 10-40① 20-80① 2-8① 4-16① 10-40① 20-80①	~	12IFC53M1A M2A M3A M4A M5A M6A M7A M8A							
50 HERTZ,	1 N.O. C	ontact						1		
0.15-1.2 0.5-4 2.5-7.5		12IFC51A5A	12IFC53A6A A2A	12IFC77A2A						
1-12 0.5-4 1-12 1-12 2.5-7.5	2-50 2-50 6-150 6-150	A4A B5A 	A1A B2A B3A B1A	B2A B3A B1A		,		CI	8 (3.6)	14 (6.3)
0.5-4.0 0.5-4.0 0.5-4.0 0.5-4.0 1-12 1-12 1-12 1-12	2-80 4-160 10-400 20-800 2-80 4-160 10-400 20-800		12IFC53M1A M2A M3A M4A M5A M6A M7A M8A							
60 HERTZ	, 2 N.O. C	ontacts (See Se	ction, Output Cor	ntact Arrangeme	nt)			1 1		
0.5-4 1-12 2.5-7.5 2.5-7.5 0.5-4 1-12 1-12 2.5-7.5	6-150 2-50 2-50 6-150 6-150	12IFC51AD2A AD1A BD2A BD1A	12IFC53AD2A AD1A BD2A BD3A BD1A	12IFC77AD2A AD1A BD2A BD3A BD1A	12IFC95AD2A AD1A BD2A BD1A	12IFC57AD2A AD1A BD2A BD1A	12IFC66AD1A BD1A 			
1.5-6.0 2.5-7.5	1.5-5.0 6-150 2-8①				12IFC95FD1A		12IFC66KD1A			
50 HERTZ,			1	itact Arrangemen	1					
0.5-4 1-12 2.5-7.5 2.5-7.5 0.5-4 1-12 1-12 2.5-7.5	6-150 2-50 2-50 6-150 6-150	12IFC51AD5A AD4A BD5A BD4A	12IFC53AD2A AD1A BD2A BD3A BD1A	12IFC77AD2A AD1A BD2A BD3A BD1A	12IFC95AD2A AD1A BD2A BD1A	12IFC57AD2A AD1A BD2A	12IFC66AD2A BD2A 			
1.5-6.0 2.5-7.5	1.5-5.0 6-150 2-8①				12IFC95FD1A		12IFC66KD2A			

① High-Dropout Instantaneous Unit.

² Wound Shading Coil on TOC Unit.

Time-overcurrent Relays

GE Protective Relays

AVAILABLE SETTINGS

Time-Overcurrent Units:

Range (Amps)	Taps (Amps)
0.15-1.2	0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2
0.5-4.0	0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 1.5, 2.0, 2.5, 3.0, 4.0
1-12	1.0, 1.2, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0, 12.0
1.5-6.0	1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0
2.5-7.5	2.5, 2.8, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.5

Instantaneous Units:

Pick-up setting is continuously adjustable over the entire range.

OPERATING COIL RATINGS

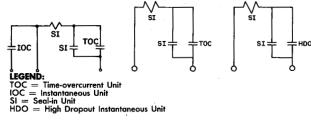
Note that relays with both time-overcurrent and instantaneous units are limited to the lesser of the respective current ratings, since the operating coils are connected in series.

OUTPUT CONTACT ARRANGEMENTS

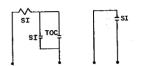
*Note: The electrical separate second contact associated with the seal-in unit will operate only when the main unit's (time-over-current unit) contact closes and the target seal-in unit draws trip current. Thus, the second contact should be used for alarm purposes only.

IFC51A, 53A, 77A

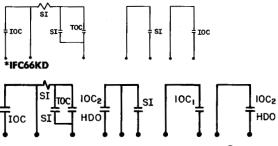
IFC95FD



TIME-OVERCURRENT UNIT


	IFC	51		IFC53		IFC:	57	IFC66	IFO	77		IFC95	
Tap Setting	0.5-4.0 Tap	1-12 Tap	.15-1.2 Tap	0.5-4.0 Tap	1-12 Tap	0.5-4.0 Tap	1-12 Tap	2.5-7.5 Tap	0.5-4.0 Tap	1-12 Top	0.5-4.0 Tap	1-12 Tap	1.5-6.0 Tap
CONTIN	NUOUS	CURR	ENT RA	TING -	IN AA	APERES							
0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 1.0 2.5 2.8 3.0 4.5 5.0 5.5 6.5 7.5 8.0 10.0 11.0 11.0 11.0 11.0 11.0	1.6 1.8 2.0 2.1 2.7 3.0 3.5 4.0 4.5 5.0	2.7 4.1 4.6 5.3 6.0 6.5 7.6 8.5 9.3 10.0 10.0 10.1 13.2	1.3 1.4 1.5 1.6 1.7 1.9 2.0 2.1 2.2 2.4 2.5	3.8 4.0 4.2 4.4 4.7 5.3 5.8 6.2 6.6 7.1	6.8 7.1 7.7 8.3 8.8 9.4 10.3 11.0 11.6 12.4 12.5 14.4	2.3 2.5 2.7 2.9 3.3 4.1 5.3 5.8 6.8	3.9 4.3 4.8 5.3 6.2 6.8 7.8 8.8 9.7 10.4 11.1 12.4 13.6	5.0 5.3 5.5 5.8 6.1 6.4 6.8 7.0 7.3 7.5 8.0	2.5 2.7 3.0 3.2 3.4 4.0 4.5 5.9 6.5 7.5	5.8 6.4 7.2 8.4 9.4 10.4 12.1 13.6 15.1 16.4 17.6 19.8 21.8	1.2 1.4 1.5 1.6 1.9 2.1 2.4 2.9 3.3 3.7 4.5	2.0 2.3 2.7 3.3 3.9 4.5 6.6 7.5 *8.4 9.3 12.5	3.0 3.5 4.0 4.4 5.3 6.0 7.0
All	128	260	60	140	260	128	260	260	84	220	82	164	246
All	120	200	- 50	140	200	120	200	200	04		02	104	240

INSTANTANEOUS UNIT


Rating (Amps)	Range Conn. of Unit	Range① (Amps)	Continuous Rating (Amps)	One-Second Rating (Amps)
1.5-5.0	_	1.5-5.0	4.8 3.7	130
2-8① (IFC66KD only)	Lower Upper	2-4 4-8	3.7 4.8	130
2-8①	Lower Upper	2-4 4-8	1.9 3.0	70
2-50	Lower Upper	2-10 10-50	3.5 8.0	130
4-16①	Lower	4-8 8-16	4.3 6.9	140
6-150	Lower	6-30 30-150	8.0 18.0	260
10-40①	Upper Lower	10-20	9.0	275
20-80①	Upper Lower Upper	20-40 20-40 40-80	16.2 12.6 20.0	275

① This range is approximate, which means that 6-30 and 30-150 might actually be 6-28 and 28-150. However, there is at least a one-amp overlap between the maximum "Low" setting and the minimum "High" setting.

*IFC51AD, 53AD, 57AD, 66AD, 77AD, 95AD

*IFC51BD, 53BD, 57BD, 66BD, 66CD, 77BD, 95BD

Overcurrent Relays

Time-overcurrent Relays

GE Protective Relays

SUBSTITUTION TABLE

	L	60 Hertz I	AC Model	IFC A	Nodel Which	Supercede	IAC	50 Hertz	IAC Model	
Time-Current Characteristic	Time Range	Inst. Range nps)	Model Number	60 Hertz Model Number	Time Range (Am	Inst. Range	50 Hertz Model Number	Model Number	Time Range (An	Inst. Range
	0.5-4	—	IAC51A801A	IFC51A2A	0.5-4	_	IFC51A5A	1AC51A804A	0.5-4	<u> </u>
Inverse	2-16 0.5-4	0.5-4 2-16	A802A IAC51B801A B803A B805A	IFC51B2A	1-12 0.5-4	2-50	IFC51B5A	A805A IAC51B821A B823A B825A	0.5-4	0.5-4 2-16 10-80
with Instantaneous	2-16	10-80 2-16 10-80 20-160	IAC51B804A B806A B808A	IFC51B1A	1-12	6-150	IFC51B4A	IAC51B824A B826A B828A	2-16	2-16 10-80 20-16
Very Inverse	0.5-4 1.5-12	_	IAC53A801A A803A	IFC53A2A A1A	0.5-4 1-12	=	IFC53A2A A1A	IAC53A801A A803A	0.5-4 1.5-12	=
Very Inverse	0.5-4	0.5-4 2-16 10-80	IAC53B801A B803A B805A	IFC53B2A	0.5-4	2-50	IFC53B2A	IAC53B801A B803A B805A	0.5-4	0.5-4 2-16 10-80
with Instantaneous	1.5-12	2-16	IAC53B810A	IFC53B3A	1-12	2-50	IFC53B3A	IAC53B810A	1.5-12	2-16
msiamaneous	1.5-12	10-80 20-160	IAC53B811A B812A	IFC53B1A	1-12	6-150	IFC53B1A	IAC53B811A B812A	1.5-12	10-80 20-16
Very Inverse with High Dropout Instantaneous	0.5-2.0 0.5-2.0 1.5-6.0 1.5-6.0 1.5-6.0	2-6① 4-12① 10-30① 4-12① 2-6①	IAC53M5A M9A M3A M6A M7A	IFC53M1A M2A M7A M6A M5A	0.5-4.0 0.5-4.0 1-12 1-12 1-12	2-8 4-16 10-40 4-16 2-8		=		
Extremely Inverse	0.5-4 1.5-12	=	IAC77A801A A803A	IFC77A2A A1A	0.5-4 1-12	_	IFC77A2A A1A	IAC77A804A A805A	0.5-4 1.5-12	=
Extremely Inverse	0.5-4	0.5-4 2-16 10-80	IAC77B801A B803A B805A	IFC77B2A	0.5-4	2-50	IFC77B2A	IAC77B821A B823A B825A	0.5-4	0.5-4 2-16 10-80
with Instantaneous	1.5-12	2-16	IAC77B810A	IFC77B3A	1-12	2-50	IFC77B3A	IAC77B824A	1.5-12	2-16
misiamano o o	1.5-12	10-80 20-160	IAC77B811A B812A	IFC77B1A	1-12	6-150	IFC77B1A	IAC77B826A B828A	1.5-12	10-80 20-16
Medium-	0.5-2		IAC57A3A	IFC57AD2A	0.5-4		IFC57AD2A	IAC57A6A	0.5-2	
time Inverse	1.5-6 4-16	20-80	IAC57A2A A101A	IFC57AD1A	1-12		IFC57AD1A	IAC57A8A A104A	1.5-6 4-16	_
	0.5-2	10-40	IAC57B3A	IFC57BD2A	0.5-4	2-50	IFC57BD2A	IAC57B7A	0.5-2	10-40
Medium-time Inverse with Instantaneous	1.5-6 1.5-6 1.5-6 4-16 4-16	10-40 20-80 4-16 10-40 20-80	IAC57B2A B10A B13A B101A B104A	IFC57BD1A	1-12	6-150	IFC57BD1A	IAC57B6A B11A B105A B108A	1.5-6 1.5-6 4-16 4-16	10-40 20-80 10-40 20-80
Long-time Inverse	2.5-5 4-8	=	IAC66A1A A2A	IFC66AD1A	2.5-7.5	_	IFC66AD2A	IAC66A12A A14A	4-8 2.5-5	Ξ
Long- time Inverse with Instantaneous	2.5-5 4-8 2.5-5 4-8 2.5-5 4-8	10-40 10-40 20-80 20-80 4-16 40-160	IAC66B1A B2A B3A B4A B5A B16A		2.5-7.5	6-150	150//0004	IAC66B7A B8A B9A B10A	2.5-5 4-8 2.5-5 4-8	10-40 10-40 20-80 20-80
	2.5-5	10-40	B30A IAC66K6A	IFC66BD1A			IFC66BD2A	IAC66K1A	2.5-5	10-40
Long- time Inverse with Standard and HighDropout Instantaneous	4-8 2.5-5 4-8 2.5-5 4-8 2.5-5 4-8 2.5-5 2-6	10-40 20-80 40-160 40-160 20-80 20-80 10-40 4-16 10-40	K7A K8A K14A K16A K19A K20A K24A K30A	IFCCCC	2.5-7.5	6-150 2-8*	IFC66KD2A	K2A K4A K10A	2.5-5 4-8 2.5-5	20-80 40-16 40-16
	2-6 0.5-2	20-80	K37A IAC55A3A	IFC66KD1A IFC95AD2A	0.5-4		IFC95AD2A	IAC55A6A	0.5-2	-
Short- time Inverse	1.5-6 4-16 1.5-6	=	IAC55A2A A101A A1A	IFC95BD1A	1-12	_	IFC95BD1A	IAC55A5A A104A	1.5-6 4-16	=
Short-	0.5-2 0.5-2 0.5-2 1.5-6 0.5-2	10-40 4-16 2-8 2-8 1-4	IAC55B3A B10A B17A B20A B25A	IFC95BD2A	0.5-4	2-50	IFC95BD2A	IAC55B7A B14A B22A	0.5-2	10-4 4-1 2-8
time Inverse with Instantaneous	1.5-6 1.5-6 0.5-2 1.5-6 4-16	10-40 4-16 20-80 20-80 10-40 20-80	IAC55B2A B9A B18A B19A B101A B104A		1-12	6-150		IAC55B6A B105A B10BA B122A	1.5-6 4-16 4-16 4-16	10-4 10-4 20-8 4-1
	4-16 4-16	4-16 40-160	B115A B121A	IFC95BD1A			IFC95BD1A			l

① High dropout instantaneous unit.

PJC

Instantaneous Overcurrent Relays

GE Protective Relays

For Instantaneous Overcurrent or Undercurrent Protection of Ac and Dc Circuits and Machines

APPLICATION

General Service: The Type PJC relay is a high-speed, non-directional current relay that is designed for general service.

Feeder Circuit Overcurrent Protection is a common application for the Type PJC relay where time delay and directional selectivity are not required and where very short tripping times on high-fault currents are desired.

On applications requiring time delay or directional selectivity, the Types IFC or IBC should be used.

DESCRIPTION

- (a) The Type PJC is a plunger relay that operates on the principle of electromagnetic attraction. The contacts are opened or closed by an armature which is attracted vertically into a small solenoid.
- (b) Generally, the PJC is a single element relay, but these units can be mounted in the drawout case to provide a 2- or 3-unit relay. This grouping of units in a drawout case saves valuable panel space and provides for easy testing and checking. See tabulation, pages 2 and 3 for available combinations.
- (c) The basic PJC11, PJC12, PJC14 and PJC15 relays have mechanical targets. The PJC32 line of relays has a somewhat smaller base and thus allows 3 units to be mounted horizontally in the S-1 or S-2 case with the conventional 0.2/2A target seal-in.

(Photo 8007137)

Fig. 1. Type PJC molded case relay.
CONTACT INTERRUPTING RATINGS
IN AMPERES

	Ac Circuits			Dc Circuits			
Nonin	ductive	Inductive	Nonin	ductive	Inductive		
Volts	Amps	Amps	Volts	Amps	Amps		
115 230 460	5 2 1	2 1 0.5	24 48 125 250	5 2 1 0.3	1.0 0.5 0.3 0.15		

OVERCURRENT RATINGS

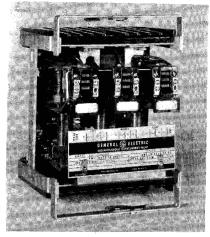
Continuous Rating Amperes		Calibration	n Points	
.06 .12 .225 .3 .6 11.5 3 5 6 10 12 25 25	.02 .04 .05 .075 .1 .2 .4 .5 1 2 2 4 4 10 20 40	.032 .064 .08 .12 .16 .32 1.6 .8 1.6 8 3.2 16 6.4 16 32 64	.05 .1 .125 .188 .25 .4 1.25 2.5 20 5 40 10 25 50 100	.08 .16 .2 .3 .4 .8 10 2 4 50 8 100 16 40 80 160

RELAY CHARACTERISTICS

High-speed Operation: The contact closing time is approximately 1 cycle (60-Hertz bases) at twice the pickup setting.

High Dropout: Contacts reset at approximately 90 to 95 percent of pickup on ac and

TABLE 1—Contact Availability


Relay	Number Cont.			Conta	ct Types					
Models	Per Unit	Standard ①								
PJC11A, 11X, 11Z, 11AV, 11AW, 12A, 12D	2	2 N.O. (Code 20)	2 N.Ó. (Code 20)	1 N.O. and 1 N.C. (Code 11)	2 N.C. (Code 02)					
PJC14C, 14D, 14F	4	2 N.O. and 2N.C. (Code 22)	4 N.O. (Code 40)	3 N.O. and 1 N.C. (Code 31)	2 N.O. and 2 N.C. (Code 22)	1 N.O. and 3 N.C. (Code 13)	4 N.C. (Code 04)			
PJC32D, 32E	2	1 N.O. and 1 N.C.								
PJC21A, 32C, 32F, 32G, 32H, 32J, 32L	2	2 N.O.								
PJC15F	4	4 N.O.								

① Unless specified, standard contact arrangement will be supplied. To order other than standard contact arrangement, place the contact code behind the model number.

Example: 12PJC11AV3A-Code 11.

N.O. = Normally Open

N.C. = Normally Closed

(Photo 8040758)

Fig. 2. Type PJC32 relay (removed from case).

70 to 85 percent of pickup on dc when the relay has at least one circuit-closing contact.

Continuous-current Rating: The relay coils are continuously rated as specified on the nameplate for frequencies of 25 to 60 Hertz and dc. Ratings for continuous operation on ac are for the non picked-up position only. However, the limitation is mechanical, not thermal, and the relay life expectancy under continuously picked-up conditions is a matter of months.

Self-or Hand-reset: Relays listed in this section have self-resetting contacts and hand-reset targets. Special models that are not listed are available having hand-reset contacts.

Calibration: The standard relays are calibrated at 60 Hertz. For 25 or 50 Hertz and dc applications, this calibration is correct within approximately 10 percent.

Mounting: The molded case relays are surface mounted and have studs for back connection. The drawout case relays can be surface or flush mounted.

CONTACT RATINGS

The current-closing rating of the contacts is 30 amperes. The current-carrying rating is 5 amperes continuously or 30 amperes for 2 seconds.

REFERENCES:

Dimensions	Section 16
How to Order	. Section 1
Instruction Books	Section 17
Target and Contact Data	.Section 16
Relay Standards	.Section 16

PJC

Instantaneous Overcurrent Relays

GE Protective Relays

SELECTION GUIDE—Dc, or 25, 50, 60 Hertz Ac MOLDED CASE RELAYS

Ratings (Amps)		Model	Number	Contacts	Approx Wt. in lb (kg)		
Continuous	One Second	Calibration Range	Self-Reset	Hand Reset①		Net	Ship.
.06 .12 .2 .225 .3 .6 .1.5 .3 .6 1.5 .3 .6 .1.5 .3 .40 .40	2.8 5.7 9.2 11.4 18.2 36.8 75 150 275 280 500 500	.0208 .0416 .057 .0753 .14 .28 .5-2 1-4 2-8 4-16 10-40 20-80 40-160	12PJC11A28 A29 A10 A30 A9 A8 A1 A2 A3 A4 A5 A6	12PJC 12A 10 A1 A2 A3 A4 A5 A6 A7	2 Contacts (If contact arrangement is not specified, 2 N.O. will be supplied)	2.5 (1.1)	4 (1.8)
1.5 3 6 12 25 40 40	75 150 275 280 500 500	.5-2 1-4 2-8 4-16 10-40 20-80 40-160	12PJC14D1 D2 D3 D4 D5 D6 D7	12PJC14F1 F2 F3 F4 F5 F6	4 Contacts (If contact arrangement is not specified, 2 N.O. & 2 N.C. will be supplied)		

DRAWOUT CASE RELAYS

	Ratings (Amps)		Model	Number	Contacts	Case	Approin Ib	ox Wt.
Continuous	One Second	Calibration Range	Self-Reset	Hand Reset①		Size	Net	Ship.
ONE UNIT								
.12 .3 .6 1.5 3 6 12 25 25 25	5.7 18:2 36.8 75 150 275 275 275 275 275 275	.0416 .14 .28 .5-2 14 28 4-16 10-40 20-80 40-160	12PJC11AV23A AV10A AV8A AV1A AV2A AV3A AV4A AV5A AV6A AV7A	12PJC12D1A D2A D3A D4A D5A D6A D7A	2 Contacts (If contact arrangement is not specified, 2 N.O. will be supplied)	S1	8 (3.6)	12 (5.4)
1.5 3 6 12 25 25 25	75 150 275 275 275 275 275 275	.5-2 1-4 2-8 4-16 10-40 20-80 40-160	12PJC14C1A C2A C3A C4A C5A C6A C7A		4 Contacts (if contact arrangement is not specified, 2 N.O. & 2 N.C. will be supplied)			
TWO UNITS (Bo	oth Units Rated A	like)						
1.5 3 6 12 25 25	75 150 275 275 275 275 275 275	.5-2 1-4 2-8 4-16 10-40 20-80 40-160	12PJC11AW11A AW12A AW13A AW14A AW15A AW16A AW17A		2 Contacts (If contact arrangement is not specified, 2 N.O. will be supplied)	S2	10	15

① N.O. Contact may not remain closed when relay is in the latched-up position.

Instantaneous Overcurrent Relays

GE Protective Relays

DRAWOUT CASE RELAYS (Cont'd)

-	Ratings (Amps)		Model	Number	Contacts	Case	Appro in lb	x Wt (kg)
Continuous	One Second	Calibration Range	Self-Reset	Hand Reset	Conders	Size	Net	Ship.
HREE UNITS (All Units Rated	Alike)						
-1 5 10	73.5 375 500	.4-10 2-50 4-100	12PJC11X2A X3A X1A		2 Contacts	M2	14 (6.4)	20 (9.1)
1.5 3 6 12 25 25 25	75 150 275 275 275 275 275 275	.5-2 1-4 2-8 4-16 10-40 20-80 40-160	12PJC11Z1A Z2A Z3A Z4A Z5A Z5A Z6A Z7A		(If contact arrangement is not specified, 2 N.O. will be supplied)	M2	13 (5.9)	19 (8.6)
1.5 3 6 12 25 25 25	75 150 275 275 275 275 275 275	.5-2 1-4 2-8 4-16 10-40 20-80 40-160	12PJC15F1A F2A F3A F4A F5A F6A F7A		4 N.O.	M2	14 (6.4)	20 (9.1)
NE UNIT - W	ith 0.2/2.0 Amp	Target & Seal-in						
1.5 3 6 12 25 25 25	75 150 275 275 275 275 275 275	.5-2 1-4 2-8 4-16 10-40 20-80 40-160	12PJC21A1A A2A A3A A4A A5A A6A A7A		2 N.O.	Sı	8 (3.6)	" (5.4)

THREE UNITS WITH OR WITHOUT 0.2/2.0 AMP TARGET AND SEAL-IN

Model	Contacts	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Int. Conn. Diagram	Case	Appro in lb	x. Wt. (kg)
Number	(Each Unit)		(See page 2-24)	Size	Net	Ship.
12PJC32C▲A 12PJC32D▲A 12PJC32E▲A 12PJC32F▲A 12PJC32F▲A 12PJC32G▲A 12PJC32H▲A 12PJC32J▲A 12PJC32J▲A	2 N.O. 1 N.O. & 1 N.C. 1 N.O. & 1 N.C. 2 N.O. 2 N.O. 2 N.O. 2 N.O. 2 N.O. 2 N.O.	3 Target & Seal-ins 3 Target & Seal-in 3 Target Only 3 Target & Seal-in 3 Target & Seal-in 3 Target Only 2 Target	Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10	\$2 \$2 \$2 \$2 \$1 \$1 \$2 \$1	12 (5.4)	18 (8.2)

▲ Complete the model number by selecting the proper number from the table below.

Calibration Banco				Model Number▲			
Calibration Range For Middle Unit (Amps)			C	alibration Range (& Right Units (A	for mps)		-
	.5-2	1-4	2-8	4-16	10-40	20-80	40-160
.5-2 1-4 2-8 4-16 10-40 20-80 40-160	23	24 34	25 35 45	26 36 46 56	27 37 47 57 67	28 38 48 58 68 78	29 39 49 59 69 79 89

PJC

GE Protective Relays

CONNECTION DIAGRAMS

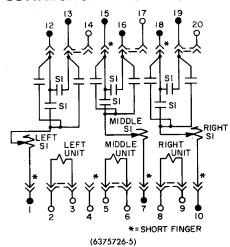


Fig. 3. Internal connections diagram for the PJC32C relay (front view).

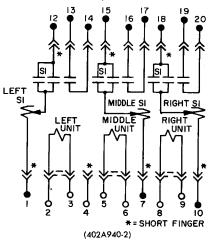


Fig. 6. Internal connections diagram for the PJC32F relay (front view).

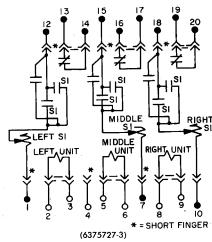


Fig. 4. Internal connections diagram for the PJC32D relay (front view).

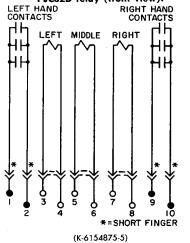


Fig. 7. Internal connections diagram for the PJC32G relay (front view).

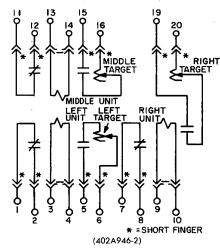


Fig. 5. Internal connections diagram for the PJC32E relay (front view).

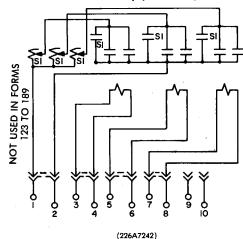


Fig. 8. Internal connections diagram for the PJC32H relay (front view).

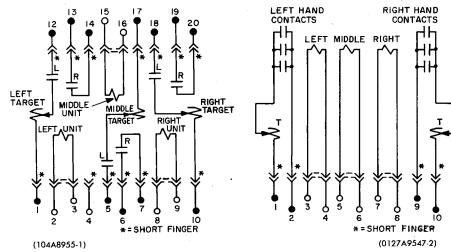


Fig. 9. Internal connections diagram for the PJC32J relay (front view).

Fig. 10. Internal connections diagram for the PJC32L relay (front view).

BFC

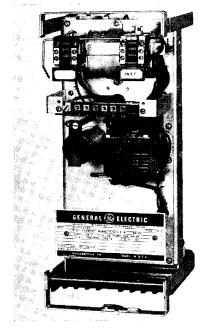
Instantaneous Overcurrent Relays

GE Protective Relays

DESCRIPTION

The Type BFC relay is an instantaneousovercurrent relay with harmonic restraint.

The basic instantaneous unit is restrained from operating when the second harmonic component of current is twenty per cent or more of the fundamental component of current. A separate, high-set instantaneous unit of the hinged-armature type operates without harmonic restraint. This unit is factory-set at approximately 26 times the tap value and is designed to assure the relay operates during high-current conditions, when the current transformer may saturate and cause false harmonic restraint of the main unit.


APPLICATION

When applied as a protective relay, the Type BFC relay provides instantaneous protection for faults which exceed the pickup setting. The harmonic restraint feature prevents relay operation when magnetizing inrush currents exist.

The Type BFC relay may be used to supervise ground or phase relays which may operate on inrush current. A typical consideration involves energizing a line which has one or more transformers connected to it. Inrush current to the transformer or transformers may cause the relays to operate at the terminal used to energize the line. The use of a Type BFC relay connected as shown in Fig. 4, page 2-25, will supervise the ground relays to prevent undesired tripping of the line breaker. Phaserelay supervision may be accomplished by using three relays, one in each phase CT lead.

CONTACTS

The auxiliary and instantaneous unit contacts will make and carry 30 amperes for tripping duty for voltages not exceeding 250 volts. If more than one circuit breaker per set of contacts is to be tripped or if the tripping current exceeds 30 amperes, an auxiliary relay must be used. After tripping occurs it is necessary that the tripping circuit of these relays be opened by an auxiliary switch on the circuit breaker or by other automatic means.

(Photo 8035562)

Fig. 1. Type BFC relay in cradle without case.

SELECTION GUIDE

Freq. (Hz)	Cont. Rating	Calibration Range ①	Aux. Rel. Rating	Target (Part of	Model Number	Case Size		Weight (kg)
(112)	(Amps)	(Amps)	(Volts Dc)	Aux. Rel.)	Number	Size	Net	Ship
60		0.5-2.0 4.0-16.0 0.5-2.0 4.0-16.0	125 125 48 48		12BFC11A1A 12BFC11A3A 12BFC11A5A 12BFC11A6A			
	5			Yes		M1	20 (9.0)	30 (13.5)
50		0.5-2.0 0.5-2.0 4.0-16.0	125 250 125		12BFC11A7A 12BFC11A8A 12BFC11A9A			

i Available Taps-

REFERENCES:

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16

^{0.5-2.0} Amps—0.5, 0.6, 0.8, 1.0, 1.2, 1.5, 2.0

^{4.0-16.0} Amps—4, 5, 6, 7, 8, 10, 12, 16

BFC

Instantaneous Overcurrent Relays

GE Protective Relays

DIAGRAMS

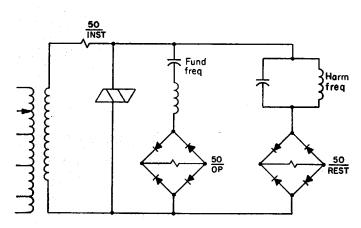


Fig. 2. Operating and restraining circuits of Type BFC relay

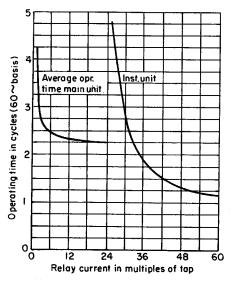


Fig. 3. Operating time characteristic of Type BFC relay (0178A7337)

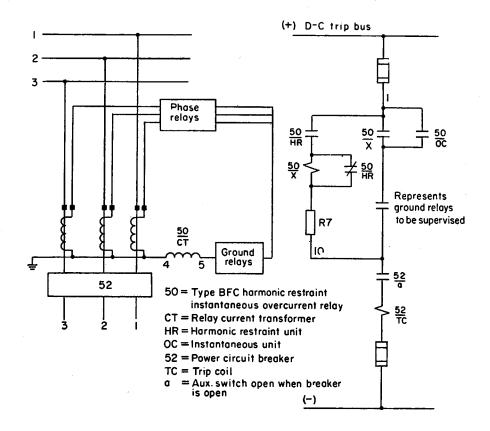


Fig. 4. Typical diagram for Type BFC relay used as a ground-fault detector to supervise ground relays (0178A9087)

Instantaneous Overcurrent Relays

GE Protective Relays

DESCRIPTION

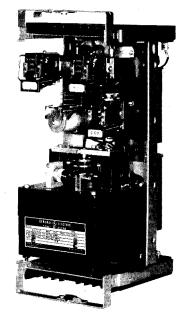
The CHC relays are cup-type, high speed, sensitive, overcurrent fault detector relays. These relays may be set to pick up below full load current and operate continuously in the picked-up position. The cup unit circuits are designed to prevent contact welding.

The CHC11A relay is a complete three-phase and ground, multicontact, high speed nondirectional overcurrent relay. The relay consists of an induction cup unit for multiphase faults and a small hinged armature unit for ground faults. Two targets and four electrically separate contacts are available. Three are normally open with a fourth that is field selectable either normally open or closed. An external reactor is supplied with the relay to reduce dropout time of hinged armature unit when applied in breaker failure schemes. Note that use of the reactor will increase pickup of ground fault unit approximately 40 percent.

The CHC15A consists of two cup units. The top unit is used for ground fault detection, with the bottom unit for phase fault detection. Also included in the relay are two targets and four electrically separate contacts; these are normally open with a fourth contact that is field selectable either normally open or closed.

The CHC21A and CHC21C relays consist of an induction cup unit that is responsive to both phase and ground currents, and a telephone type auxiliary relay that provides four or five electrically separate contact circuits. Two of these contact circuits have targets wired in series. The CHC21A auxiliary relay has three normally open con-

tacts and a fourth contact that is field selectable normally open or closed. The CHC21C has an additional normally open contact.


APPLICATION

The CHC11, CHC15, and CHC21 relays may be applied wherever a high-speed fault detector is required. However because it has four or five electrically separate contacts and can be operated continuously in the picked up position, it is particularly well suited for applications as a fault detector in circuit breaker failure schemes. In these schemes, the CHC11, CHC15, and CHC21 relays are used to detect the failed circuit breaker and to select the back up breakers to be tripped in order to isolate the fault.

The CHC12 relay is designed as a current fault detector in conjunction with distance relays to prevent tripping of the circuit breaker or operation of the associated timer because of loss of relay potential supply for reasons other than a system fault. This can occur because of (1) short circuits or open circuits involving the potential supply, (2) from switching (with certain configurations of power circuits) or (3) because of the use of line-side potential supply for the relay. In the latter instance the fault detector protects the associated timer against possible burnout when the breaker is open, and avoids false retripping of the breaker at the instant of reclosure.

RATINGS

The pickup of the cup units and the hinged armature units are continuously adjustable over their entire range.

(Photo 8035502)

Fig. 1. CHC11A fault detector relay (out of case)

The auxiliary telephone relay used in these relays is continuously rated at the nameplate dc voltage for the relay. The contacts can carry three amperes continuously or 30 amperes for two seconds. The current interrupting capabilities are shown in Table I.

The contacts of the cup unit and the hinged armature unit are capable of interrupting the auxiliary telephone unit current.

TABLE I— Auxiliary Telephone Relay Interruping Capabilities

Volts	Inductive	Non-Inductive
(Dc)	(Amp)	(Amp)
48	1.0	3
125	0.5	1.5
250	0.25	1.0

REFERENCES:

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	

GE)

CHC

Instantaneous Overcurrent Relays

GE Protective Relays

SELECTION GUIDE

3 PHASE PROTECTION

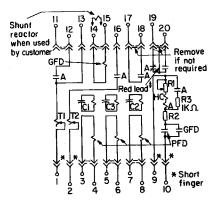
Frequency Phase Current (Hz) (Amps)		Continuous Rating	Target	Contacts	Model	Case	Approx. Wt. in Lb. (kg)	
	(Amps)	and Seal-in (Amps)		Number	Size	Net	Ship	
60	1-4 1-4 1-4 2-8 2-8 2-8 4-16 10-40	5	0.2 1.0 2.0 0.2 1.0 2.0 1.0	1 N.O.	12CHC12A29A A25A A28A A10A A2A A1A A7A A12A	S2	20 (9.1)	25 (11.3)
50	2-8			A13A				

3 PHASE AND GROUND PROTECTION

(Hz) Curren	Phase Current	Ground Current	Continuous Rating (Amps)		Aux. Dc	Two Targets	Contacts	Model Number	Case Size	Approx. Wt. in Lb. (kg)	
	(Amps)	(Amps)①	Phase Unit	Ground Unit		(Amps)	Comocio			Net	Ship
60	1-4 1-4 1-4 2-8 2-8 2-8 2-8 2-8 2-8 2-8 2-8 2-8 2-8	0.5-2.0 0.5-2.0 1.4 0.5-2.0 0.5-2.0 1-4 1-4 2-8 2-8 4-16 10-40 20-80 4-16 2-8	444555555555555555555555555555555555555		125 220 48 125 250 48 125 250 48 125 250 125 125 125 125	0.2/2.0	4 N.O. or 3 N.O. & 1 N.C.	12CHC11A29A A52A A33A A25A A21A A26A A28A A22A A23A A34A A27A A30A A31A A31A A32A A46A	M2	25 (11.3)	31 (14.1
50	2-8 2-8 2-8	0.5-2.0 1-4 1-4			125 125 250			A38A A37A A36A			
60	1-4 2-8 2-8 2-8 2-8 2-8 2-8 2-8 4-16	0.5-2.0 0.5-2.0 0.5-2.0 0.5-2.0 0.5-2.0 1-4 1-4 1-4 2-8 4-16	4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	2.5 2.5 2.5 2.5 5.0 5.0 5.0 5.0	125 48 125 125 250 48 125 125 125	1.0 0.2 0.2 1.0 1.0 0.2 1.0 0.2 1.0	4 N.O. or 3 N.O. & 1 N.C.	12CHC15A3A A7A A2A A1A A4A A9A A8A A5A A6A	M2	25 (11.3)	31 (14.1

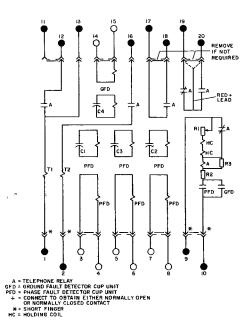
3 PHASE AND GROUND PROTECTION

(Hz) Curren	Phase Current	Current Current	Conti Ra (Ar	nuous ing Aux.		Two Targets	Contacts	Model Number	Case Size	Approx. Wt. in Lb. (kg)	
	(Amps)		Phase Unit	Ground Unit	Dc (Volts)	(Amps)		i i i i i i i i i i i i i i i i i i i	0.26	Net	Ship
60	2-8	0.5-2.0 0.5-2.0 0.5-2.0 0.5-2.0 0.5-2.0 1-4 1-4	10	2.4 2.4 2.4 2.4 4.8 4.8 4.8	48 110 125 220 250 48 110 125	0.2/2.0	4 N.O. or 3 N.O. & 1 N.C.	12CHC21A3A A6A A1A A8A A4A A5A A7A A2A	M2	22 (10)	27 (12.2)
60	2-8	0.5-2.0 1-4 1-4 2-8	10	1 2 2 4	125 48 125 125	0.2/2.0	5 N.O. or 4 N.O. & 1 N.C.	12CHC21C1A C4A C2A C3A	M2	22 (10)	27 (12.2)


① The ground unit is a separate hinged-armature device in the CHC11A and a separate induction cup unit for the CHC15A. The CHC21A & 21C each use a single induction cup which responds to all phase and ground faults, therefore the phase and ground pickup adjustments are interdependent.

Instantaneous Overcurrent Relays

GE Protective Relays

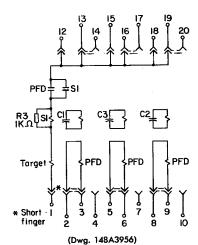
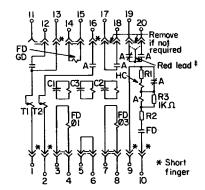

CONNECTION DIAGRAMS

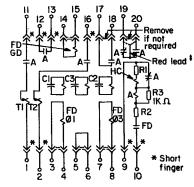
GFD-Hinged arm. unit
PFD-Cup unit
Connect to obtain either normally open or A-Telephone relay HC-Holding coil normally closed contact.

(Dwg. 178A9066)

Fig. 2. Internal connections for CHC11A, front view

(Dwg. 1787060) Fig. 5. Internal connections for CHC15A, front view


Fig. 3. Internal connections for CHC12A, front view

FD~ Cup unit fault detector

A - Telephone relay HC - Holding coil ‡ Connect to obtain either normally open or normally closed contact.

(Dwg. 227A7097) Fig. 6. Internal connections for CHC21A, front view

FD-Cup unit fault detector

A - Telephone relay HC - Holding coil + Connect to obtain either normally open or normally closed contact

(Dwg. 246A2266)

Fig. 7. Internal connections for CHC21C, front view

Overcurrent Relays

Current Balance Relays

GE Protective Relays

For Phase-balance Protection of Lines and Machines, For Protection of Exciting Windings of Regulating Transformers

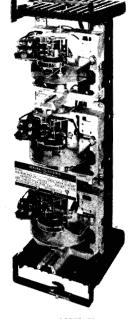
APPLICATION THREE-PHASE MACHINES

The Type IJC51E relays are used for the protection of lines and of three-phase machines, especially motors and synchronous converters against damage that is caused by phase-unbalancing and singlephase operation.

This protection cannot usually be obtained satisfactorily by voltage relays because in three-phase machine, groundedneutral, or four-wire circuits the opening of one phase conductor may not appreciably disturb the voltage phase relations or magnitude, especially under light load conditions. The machine, or other connected apparatus, will itself tend to maintain the three-phase voltage intact.

The relay compares the current in each phase with that in each of the other phases. An increase of current in the circuit, irrespective of the magnitude of the current, will not cause the relay to operate, so long as the currents in the phases are not unbalanced by 25 percent or more.

Upon the occurrence of a fault or unbalance in the machine or line which will cause the current in one of the phases to exceed that in the others by 25 percent or more, the torque exerted by the operating coil will be greater than that of the restraining coil, and the relay will function to trip the breaker.


It is recommended practice to protect all polyphase ac machines in unattended installations, and all polyphase motors (with the usual exception of those used for essential power-station auxiliaries) against damage due to single-phase operation.

The IJC51E relay can be classed as a relay which protects against discontinuity of balanced system phase conditions, rather than as a fault-protective relay. When used for protection against singlephase operation of a machine it must have a time setting of such length that it will not trip off its machine on an external single-phase fault. Such a time delay will permit selective tripping by the relays protecting the faulty circuit.

REGULATING TRANSFORMERS (Exciting Winding)

Transformers with load-ratio control equipment (regulating transformers), like all power tranformers, should be provided with differential relays to protect against faults within the transformer. In addition to the differential relays, regulating transformers require IJC current-balance relays to protect against faults that might occur in the exciting winding. Regulating-transformer windings are usually 10 to 12 percent of the kva capacity of the main circuit, and therefore their reactance is such that a fault might occur in the exciting winding which would be several times the full-load current of the regulating unit, but not in excess of the normal load current of the main circuit. Under such conditions the differential relay will not provide sensitive protection to the exciting winding. The IJC52A relay should be used to protect these windings.

Under normal load conditions with maximum buck or boost, the current-transformer secondary current from the main line (series winding) is equal to the secondary current from the exciting winding, thus holding the relay contacts open. Under internal-fault conditions the current in the relay operating coil, which is connected to the exciting-winding current transformers, increases to many times the restraining-coil current from the series curcuit. The relay will operate when the secondary current from the exciting winding becomes 120 percent or more of the secondary current from the series winding, provided this exceeds the

(Photo 8007842)

Fig. 1. Type IJC51E (out of case)

3-ampere minimum pickup of the relay. The IJC52A relay is not affected by external faults because its pickup is automatically raised in proportion to the fault current.

The IJC52B is a single phase version of the IJC52A. It is used where panel layout could be a problem.

CONTACT RATING

The current-closing rating of the contacts is 30 amperes for voltages not exceeding 250 volts. The current-carrying rating is limited by the target (seal-in) and holding coils.

BURDENS-60 Hertz. 5 Amps

	1 A	Amp	5 A	mp	10 Amp		20 Amp		40 Amp			
IJC51E	Z	Pf	Z.	Pf	Z.	Pf	Z	Pf	Z	Pf		
		Operating Coil										
	0.74	0.32	0.62	0.32	0.50	0.279	0.335	0.30	0.225	0.39		
		•			Restra	int Coil						
115% Slope 125% Slope 135% Slope 150% Slope	0.99 1.06 1.20 1.46	0.358 0.34 0.33 0.32	0.868 0.928 1.05 1.24	0.325 0.31 0.30 0.29	0.636 0.65 0.716 0.835	0.310 0.30 0.29 0.28	0.40 0.41 0.448 0.54	0.366 0.345 0.345 0.32	0.283 0.29 0.292 0.355	0.5 0.47 0.474 0.46		

IJC52A, B	Circuit	Impedance	Power Factor	Volt/Amps
1300274, 2	Operating	0.38	0.38	9.5
	Restraint	0.54	0.34	13.5

Overcurrent Relays

JC52A, B		1	ractor	•
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Operating	0.38	0.38	9.5
	Postsoint	0.54	0.34	13.5

Dimensions	Section	16
How to Order	Section	1
Instruction Books	Section	17
Target and Contact Data	Section	16
Relay Standards		

IJC

Current Balance Relays

GE Protective Relays

SELECTION GUIDE

Three Phase

Eroa	Rati (Am			Operating		T. & S.I.	Model	Case	Approx. Wt. lb (kg)		
Freq. (Hz)	Cont.	Min. P.U.	(Percent)	Time (Secs.)	Contacts	Rating (Dc Amps)	Number	Size	Net	Ship	
											

For Protection of Ac Rotating Machines and Lines

Three Phase

60 50	5	1.1	120/125/135/150	2.5 3.5 2.5	1 N.O. (per phase)	0.2/2.0	12IJC51E2A E3A E4A	L-1	44 (19.8)	55 (24.8)
	ĺ			3.5	, ,		E5A			

For Protection of Exciting Windings of Regulating Transformers

Three Phase

60	8.7	3	120	 2 N.O.	0.2/2.0	12IJC52A2A	L-2	44 (19.8)	55 (24.8)
Single	e Phas	ie							
50	8.7	_	120	 2 N.O.	0.2/2.0	12IJC52B2A	S-1	12 (5.4)	18 (8.1)

CONNECTION DIAGRAMS

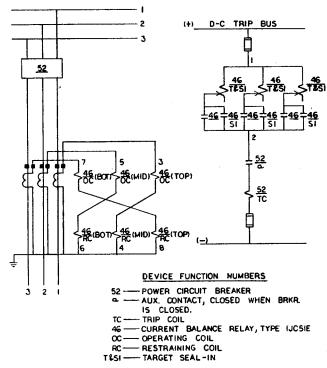


Fig. 2. Typical External Connections for Type IJC51E

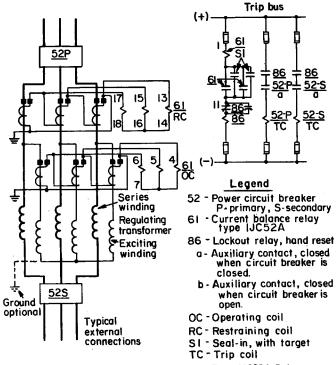


Fig. 3. Typical External Connections for the Type IJC52A Relay

SBC

Static Breaker Backup Relays

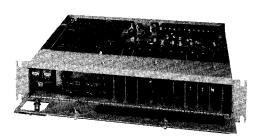
GE Protective Relays

INTRODUCTION

The Type SBC is the general designation of a family of static breaker backup relays that provide phase and ground backup protection if the primary circuit breaker fails to clear a system fault. Each relay includes phase and ground current detectors, timers, power supply, necessary logic and surge suppression. These relays are packaged in either a drawout case or an enclosed metal case with hinged front cover suitable for mounting on a 19-inch rack or panel. See Figure 1.

APPLICATION


The Type SBC static breaker backup relays are applied on a "per breaker" basis - that is, one SBC relay for each breaker in any given bus arrangement. In such an application, the current inputs to a particular SBC relay must be from the CT's that measure the current in the protected breaker. The trip outputs from the SBC relay must initiate the tripping (either directly or via transferred tripping) of all breakers which might supply fault current to the failed breaker.


GENERAL DESCRIPTION AND OPERATION

Type SBC200 and SBC53 relays have three phase current inputs (I_A,I_B,I_C). SBC200 models with a rated CT current of 5 amps have a pickup range of 1-8.5 amps and a ground (3I₀) input with pick up adjustment of 0.5-4.25 amps. The SBC53 has a phase pickup of 1-10 amps and a ground (3I₀) input with a pick up adjustment of 0.5-5.0 amps. They also contain an instantaneous trip output contact, timer(s) and a variety of breaker failure trip (BFT) output contacts.

The SBC breaker backup function begins when the primary relays associated with the protected breaker close their contacts (BFI, 62X, 62Y). Closure of one of these contacts energizes the internal power supply of the SBC. These contacts will close when the primary relays see a fault, and will remain closed until the fault is removed by successful breaker operation. With the power supply energized and any one of the four current detectors (I_A, I_B, I_C, 3I₀) picked up, the instantaneous trip contact(s) (IT) will close. This contact(s) is normally connected to initiate a "retrip" through an alternate trip circuit of the protected breaker.

When the IT contact(s) close, timer A/O is also energized. This timer has a pickup (A) time of 10-1590 milliseconds. If the protected breaker clears the fault, the current detectors will drop out and the A/O timer will reset. If the breaker fails to clear the fault, the A/O timer will reach its

(Photo 8043336)

Fig. 1. Type SBC200 and SBC53 relays

time setting and close the BFT contacts. These BFT contacts are used to trip the backup breakers.

This description generally applies to the SBC223A and SBC53A relays. Additional features are provided in the SBC223B&C and in the SBC53B&C relays as described below.

DRAWOUT CASE CONSTRUCTION

SBC223A - Includes one timer (A/O) and an instantaneous trip (IT) that can function as a re-trip of the original circuit breaker or as a seal-in. The timer is started by contact initiation (BFI) and is reset when either the contact initiation is removed or the current detector resets. Two N.O. BFT contacts with targets (T1 and T₃), one BFT contact without target, and one instantaneous IT N.O. contact with target (T₂) are provided. See Figure 3. SBC223B - Similar to SBC223A but with an added contact converter input. The contact converter and the current detector are used to supervise the timer in either the AND or OR mode. A movable link selects the mode. In the AND mode, the timer will reset only if both the current detector and the contact converter reset. In the OR mode, the timer will reset if either the current detector or the contact converter reset.

SBC223C - Similar to the SBC223B except with two timers (A/O and B/O). The A/O timer is energized by an output from the current detector. The B/O timer is energized by an output from the contact converter or by the contact converter **AND** the current detector. The option is determined by a movable link. With two timers, two different tripping times are possible depending on the input conditions. Two "BFT" contacts with targets (T₁ and T₃), one "BFT" contact without target and one instantaneous "IT" contact with target (T₂) are provided. See Figure 5. SBC231 - Includes three non-directional instantaneous overcurrent functions. The relay is intended for applications requiring an instantaneous ac overcurrent detector with fast pickup, fast reset, minimum overreach, or continued operation in the picked-up mode. The SBC231 can be used to block operation of an under-rated interrupter where fault current exceeds the interrupter's capability or to trip another breaker to reduce the fault current level prior to operation of the under-rated interrupter. The SBC231 can also be used in breaker failure schemes and as a high speed overcurrent detector in pilot and distance relaying schemes. Pickup time of the SBC231 is ½ cycle at 1.5 times pickup level and drop out time is 34 cycle with minimum fill-in time.

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16

, 000

Static Breaker Backup Relays

GE Protective Relays

ENCLOSED METAL CASE CONSTRUCTION

(For 19-inch Rack Mounting)

SBC53A – Includes one timer (A/O) and an instantaneous trip (IT) that can function as a re-trip of the original circuit breaker or other function. The A/O timer is started by contact initiation (BFI) and is reset when either the contact initiation is removed or the current detector resets. This relay has six N.O. electrically separate "BFI" contacts, two targets, T₁ and T₂ and three N.O. isolated instantaneous "IT" contacts. See Figure 7.

SBC53B - Similar to SBC53A but with an added contact converter input (AND - OR logic). The contact converter and the current detector are used to supervise the A/O timer in either the **AND** or **OR** mode.

SBC53C - Similar to SBC53B but with two timers. A/O and B/O. If the power has been activated, the A/O timer is energized by an output from the level detector and it is usually set for a relatively long time. The B/O timer is energized by an output from AND - OR logic and it is generally set for short times. With the link in the IN position, the AND - OR logic will produce an output whenever there is an output from the level detector and the contact converter. With the link in the OUT position, the AND - OR logic will produce an output whenever the contact converter produces an output. The purpose of two timers is to provide for two different tripping times depending on the input conditions.

The A/O and B/O timers are normally OR'd together to drive the six BFT contacts. If desired, a link on the A/O timer card can be moved to the "OUT" position. Then each timer (A/O and B/O) will independently drive three BFT contacts. See Figure 8.

FEATURES

- 1. Added security is provided since the SBC relay is not connected to dc control until a fault occurs and the power supply is energized by contact initiation.
- 2. Each relay has its own regulated power supply with a low voltage cut-off of approximately 60 percent and, thus, the relay will not operate from accidental grounding.
- 3. The current detector has an LED to indicate pickup, for ease in calibration and testing.
- 4. Fast reset current detectors, which may be adjusted to less than 5 milliseconds.
- 5. The SBC200 relays have three "BFT" contact outputs (two with targets) and one or two "IT" instantaneous trip contacts. The SBC53 relays have six electronically separate "BFT" contact outouts, two with targets, and three "IT" instantaneous trip contacts.
- 6. Surge suppression on all ac and dc input circuits. All relays will pass the ANSI-IEEE SWC test and the GE Fast Transient and RFI test.

RATINGS

CURRENT-A) Nominal 5-amperes at 60 Hertz with continuous capability of 10-amperes.

B) One second amperes-210.

DC POWER SUPPLY-Single rated, 48, 125-, or 250-vdc

Ambient Temperatures

These relays have been designed for continuous operation between -20C and +55C per ANSI standard C37.90. In addition, these relays will oprate within published characteristics, and not malfunction nor be damaged if operated in an ambient up to +65C.

BFT CONTACT RATINGS

3-amp continuous, 30-amp for tripping duty.

BURDEN

(maximum) for 10-amp at 60 Hertz

Phase Pick	up Setting E	Burden (Va)
1-2		2.3
2-4		1.5
4-10		1.3
310 Pickup	Setting	
0.5-1		4.5
1-2		2.3
2-50		1.6

CURRENT DETECTOR FOR SBC200 / 53

DROPOUT LEVEL-95 percent of pickup.

DROPOUT TIME-Adjustable from less than 5-ms to 10-ms when current reduced to 90 percent of pickup.

SBC Substitution List

Static Breaker Backup Relays

GE Protective Relays

DESCRIPTION

The following cross reference guide lists the replacement model numbers of the SBC200 series of Breaker Backup relays that can be substituted for earlier design

relays. Refer to the appropriate notes for design differences.

SBC MODEL #	REPLACEMENT #	NOTES	SBC MODEL #	REPLACEMENT #	NOTES
12SBC23A01D	SBC223A01A	1, 2, 3, 6	12SBC99AC04D	NONE	4, 6
12SBC23A02D	SBC223A01A	1, 2, 3, 6	12SBC99AD01D	NONE	5, 6
12SBC23A03D	SBC223A01A	1, 2, 3, 6	12SBC99AD02D	NONE	5, 6
12SBC23A04D	SBC223A03A	1, 2, 3, 6	12SBC99AE01D	SBC223B01A	1, 2, 3, 6
12SBC23A05D	SBC223A03A	1, 2, 3, 6	12SBC99AE02D	SBC223B01A	1, 2, 3,6
12SBC23A01D	SBC223A01A	1, 2, 3, 6	12SBC99AF01D	SBC223A02A	
12SBC23A02D	SBC223B01A	1, 2, 3, 6	12SBC99AG01D	SBC223B02A	1, 8 1, 8
12SBC23A03D	SBC223B01A	1, 2, 3, 6	12SBC99AH01D	SBC221B01A	1, 2, 7
12SBC23A04D	SBC223B03A	1, 2, 3, 6	12SBC99AJ01D	NONE	1, 2, 3, 6, 10
12SBC23A05D	SBC223B03A	1, 2, 3, 6	12SBC99AK01D	SBC223B01A	1, 2, 3, 6
12SBC23A01D	SBC223C01A	1, 2, 3, 6	12SBC99AK02D	SBC223B01A	1, 2, 3, 6
12SBC23A02D	SBC223C01A	1, 2, 3, 6	12SBC99AL01D	NONE	13
12SBC23A03D	SBC223C01A	1, 2, 3, 6	12SBC99AL02D	NONE	13
12SBC23A04D	SBC223C03A	1, 2, 3, 6	12SBC99AL03D	NONE	13 "
12SBC23A05D	SBC223C03A	1, 2, 3, 6	12SBC99AL04D	NONE	13
12SBC99AA01	OBSOLETE		12SBC31A01D	SBC231A01A	2, 3, 6, 11
12SBC99AB01D	SBC221A01A	1, 2, 7	12SBC31A02D	SBC231A01A	2, 3, 6, 11
12SBC99AB02D	SBC221A03A	1, 2, 7	12SBC31A03D	SBC231A01A	2, 3, 6, 11
12SBC99AB03D	SBC221A01A	1, 2, 7	12SBC31A04D	NONE	6, 11, 12
12SBC99AB04D	SBC221A03A	1, 2, 7	12SBC31A05D	NONE	6, 11, 12
12SBC99AC01D	NONE	4, 6	12SBC31A06D	NONE	6, 11, 12
12SBC99AC02D	NONE	4, 6	12SBC31A07D	SBC231A01A	2, 3, 6, 11
12SBC99AC03D	NONE	4, 6	12SBC31A08D	SBC231A01A	2, 3, 6, 11

- 1. The timer range in the old SBC was 50-500 milliseconds, the new timer range is 10-1590 milliseconds in 10 millisecond steps.
- 2. The phase pickup range in the old SBC was 1-10 amps, the new SBC has a phase pickup range of 1-8.5 amps in .5 amp steps.
- 3. The residual pickup range in the old SBC was .5-5 amps, the new SBC has a residual pickup range of .5-4.25 amps in .25 amp steps.
- 4. There is no exact replacement for this model. However, the SBC223C is similar; the only difference is that the SBC223C has the BFT1 and BFT2 outputs tied together and the SBC223C has an IT output. Also, the SBC223C has additional logic for more flexibility.
- 5. There is no exact replacement for this model. However, the SBC221A and the SBC223A are similar. The SBC221A has single pole tripping but does not have a residual current input. The SBC223A has a residual current input but doesn't have single pole tripping. Both SBC models have an IT output; the SBC99AD does not.
- 6. This model is also available in a 1 amp 50 Hz version with a phase pickup of .2-1.7 amps in .1 amp steps and a residual pickup of .1-.85 amps in .05 amp steps. It's model # would be SBCXXXX02A.
- This model is also available in a 1 amp 50 Hz version with a phase pickup of .2-1.7 amps in .1 amp steps. It's model # would be SBCXXXX02A.
- 8. This is a 1 amp 50 Hz relay. The phase pickup range in the old SBC was .2-2 amps and the residual pickup range was .1-1 amps. The new SBC has a phase pickup range of .2-1.7 amps in .1 amp steps and a residual pickup range of .1-.85 amps in .05 amp steps.
- 9. This is a 1 amp 50 Hz relay. The phase pickup range in the old SBC was .2-2 amps. The new SBC has a phase pickup range of .2-1.7 amps in .1 amp steps.
- 10. The old SBC had an adjustable fill-in timer. Its range was 13 to 21 milliseconds. The new SBC has a fixed fill-in timer of 3 milliseconds giving it a faster dropout time.
- 11. The old SBC and the new SBC perform the same functions, however, the two relays are not stud-for-stud replacements.
- 12. The phase and residual pickup range in the old SBC was 8-80 amps. The SBC231A has a phase pickup range of 1-8.5 amps in .5 amp steps and a residual pickup range of .5-4.25 amps in .25 amp steps.
- 13. This special has no direct replacement. The SBC221B has almost equivalent logic except an AND gate is used in place of an OR gate. To create this model with the new SBCs a modification to the logic board of the SBC221B is needed.

Overcurrent Relays

SBC

Static Breaker Backup Relays

GE Protective Relays

SELECTION GUIDE

Drawout Case - 3 ϕ + Ground

1 POLE OR	FREQ.	RATED CT CURRENT	CONTIN. CURRENT	DC	PHASE PICKUP	RESIDUAL CURRENT(31,)	BFT	INST, TRIP	#TARGETS @ 0.15 AMP	FUNCTIONAL BLOCK	A/O TIMER	B/O TIMER	MODEL	CASE	APPROX WT IN LB(KG)
3 POLE	(HZ)	(Amps)		VOLTAGE	(Amps)	(Amps)	CONTACTS			DIAGRAM	10-1590 MS	10-1590 MS	NUMBER	SIZE	NET SHIP
SBC221/	1-1 Pole	, One Time	r(A/O), plus	Contact C	onverters(C	C) for Phase	Selection, v	vith BFT and	d Instantane	ous Trip(IT)					
1 POLE	60	5	10	38-280	1 - 6.5 (0.5A Steps)		3 N.O.	1 N.O.	3	FIGURE 1	YES	NO NO	SBC221A1A	M2	22 27 (10) (12.3)
1 POLE	50	1	2	38-280	0.2 -1.7 (0.1A Steps) 1 - 8.5		3 N.O.	1 N.O.	3	FIGURE 1	YES	NO	SBC221A2A	M2	22 27 (10) (12.3) 22 27
1 POLE	50	5	10	38-280	(0.5A Steps)		3 N.O.	1 N.O.	. 3	FIGURE 1	YES	NO	SBC221A3A	M2	(10) (12.3)
SBC221E	31 Pole	, Two Time	rs(A/O, B/O)	, plus Coi	itact Conve	rters(CC) for i	Phase Selec	tion and Lo	gic, with BF	T and Instant	aneous Trip	(IT)			
1 POLE	60	5	10	38-280	1 - 8.5 (0.5A Steps)		3 N.O.	1 N.O.	3	FIGURE 2	YES	YES	SBC221B1A	M2	22 27 (10) (12.3)
1 POLE	50	1	2	38-280	0.2 -1,7 (0.1A Steps)		3 N.O.	1 N.O.	3	FIGURE 2	YES	YES	SBC221B2A	M2	22 27 (10) (12.3)
1 POLE	50	5	10	38-280	1 - 8.5 (0.5A Steps)		3 N.O.	1 N.O.	3	FIGURE 2	YES	YES	SBC221B3A		22 27
						stantaneous 1	4 1 11 11	1 N.U.		FIGURE 2	163	[TES	SBC2ZIBJA	: M2	(10) (12.3)
350223		, one talk	Andle with	i and	1 - 8.5	0.5 - 4.25	np((1)								22 27
3 POLE	60	5	10	38-280	(0.5A Steps)	(0.25A Steps)	3 N.O.	1 N.O.	3	FIGURE 3	YES	NO	SBC223A1A	M2	(10) (12,3)
3 POLE	50	11	2	38-280	0.2 - 1.7 (0.1A Steps)	0,1 - 0,85 (0.05A Steps)	3 N.O.	1 N.O.	3	FIGURE 3	YES	NO.	SBC223AZA	M2	22 27 (10) (12.3)
3 POLE	50	5	10	38-280	1 - 8.5 (0.5A Steps)	0.5 - 4.25 (0.25A Steps)	3 N.O.	1 N.O.	3	FIGURE 3	YES	·NO	SBC223A3A	M2	22: 27 (10) (12.3)
SBC223	3_3 Pole	, One Time	r(A/O), plus	Contact C	onverter Lo	gic with BFT	and 3 scher	ne Instanta	neous Trip(l	T)					
					1 - 8.5	0.5 - 4.25			:	1	ł			1	22 27
3 POLE	60	55	10	38-280	(0.5A Steps) 0.2 - 1.7	(0.25A Steps) 0.1 - 0.85	3 N.O.	1 N.O.	3	FIGURE 4	YES	NO	SBC223B1A	M2	(10) (12.3) 22 27
3 POLE	50	11	2	38-280	(0.1A Steps)	(0.05A Steps)	3 N.O.	1 N.O.	33	FIGURE 4	YES	NO	SBC223B2A	M2	(10) (12.3)
3 POLE	50	5	10	38-280	1 - 8.5 (0.5A Steps)	0.5 - 4.25 (0.25A Steps)	3 N.O.	1 N.O.	3	FIGURE 4	YES	NO	SBC223B3A	M2	22 27 (10) (12.3)
SBC2230	-3 Pole	, Two Time	rs(A/O, B/O	, plus Co	ntact Conve	rter Logic wit	h BFT and 3	scheme in	stantaneous	Trip(IT)					
3 POLE	80	5	10	38-260	1 - 8.5 (0.5A Steps)	0.5 - 4.25 (0.25A Steps)	3 N.O.	1 N.O.	3	FIGURE 5	YES	YES	SBC223C1A	M2	22 27 (10) (12.3)
				•	0.2 - 1.7	0.1 - 0.85							***************************************	T	22 27
3 POLE	50	1	2	38-280	(0.1A Steps)	(0.05A Steps) 0.5 - 4.25	3 N.O.	1 N.O.	3	FIGURE 5	YES	YES	SBC223C2A	M2	(10) (12.3) 22 27
3 POLE	50	5	10	38-280	(0.5A Steps)	(0.25A Steps)	3 N.O.	1 N.O.	3	FIGURE 5	YES	YES	SBC223C3A	M2	(10) (12.3)
SBC231/	4Three	Instantane	ous Overcu	rrent Fund	tions										
1 POLE	FDF6	RATED CT	CONTIN.	- 20	PHASE	RESIDUAL	A1		RGETS	FUNCTIONAL					APPROX WT IN
OR 3 POLE	FREQ. (HZ)	CURRENT (Amps)	CURRENT (Amps)	DC VOLTAGE	PICKUP (Amps)	CURRENT(31 ₀) (Amps)	CONTACTS		5 AMP KUP	BLOCK DIAGRAM	1		MODEL NUMBER	CASE	LB(KG) NET SHIP
3 POLE	60	5	10	38-280	1 - 8.5 (0.5A Steps)	0.5 - 4.25	5 N.O. 1 N.O.		2	FIGURE 6			SBC231A1A	M2	22 27 (10) (12.3)
3 POLE	50	1	2	38-280	0.2 - 1.7	(0.25A Steps) 0.1 - 0.85	of N.C. 5 N.O. 1 N.O.			FIGURE 6			SBC231A2A	M2	22 27 (10) (12.3)
			40	ļ	(0.1A Steps)	(0.05A Steps)	or N.C. 5 N.O.							ļ	22 27
3 POLE	50	5	10	38-280	1 - 8.5 (0.5A Steps)	0.5 - 4.25 (0.25A Steps)	1 N.O. or N.C.		2	FIGURE 8			SBC231A3A	M2	(10) (12.3)

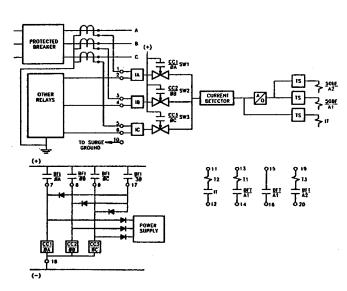


Figure 1 SBC221A Functional Block Diagram

(DWG. 0286A4833)

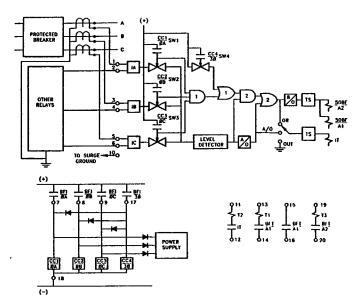


Figure 2 SBC221B Functional Block Diagram

(DWG. 0286A4834)

Overcurrent Relays

SBC

Static Breaker Backup Relays

GE Protective Relays

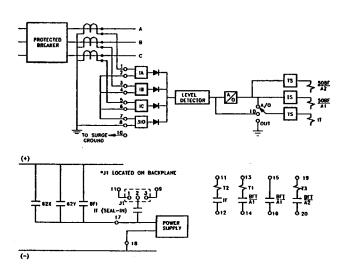


Figure 3
SBC223A Functional Block Diagram

(DWG. 0286A4835)

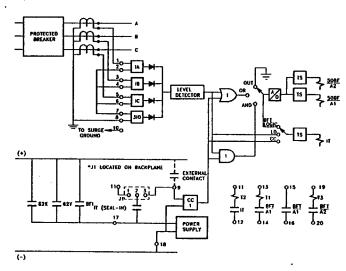


Figure 4
SBC223B Functional Block Diagram

(DWG. 0286A4836)

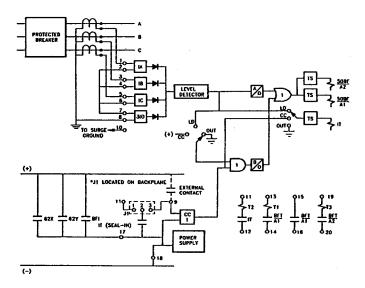


Figure 5
SBC223C Functional Block Diagram

(DWG. 0286A4837)

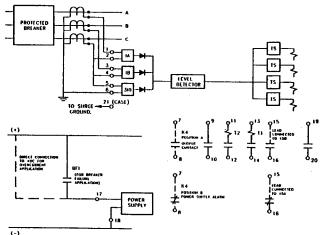
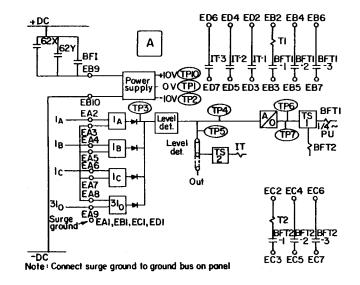


Figure 6
SBC231A Functional Block Diagram

(DWG. 0286A4839)



Static Breaker Backup Relays

GE Protective Relays

19 Inch Rack - 3ϕ + Ground

Ac Rating	Phase Range	Target T1 and T2	BFT Contacts	Gr. (31 ₀) Range	Inst. Trip	Contact Conv.	A Timer 50-500	8 Timer 50-500	Dc Control	Model Number	Rack Units	in th	ox Wi
	(Amps)	(Amps)		(Amps)	Contacts		Ms	Ms	(Volts)	L		Net	Ship
5BC53A—0	One Time	er (A/O) with	BFT and In	st. Trip									
60 Hz 10 Amp.	1-10	1.0	6 N.O.	0.5-5	3 N.O.		Yes		48 125 250	12SBC53A3 A1 A2	2	22 (9.9)	30 (13.6
50 Hz 10 Amp	1-10	1.0	6 N.O.	0.5-5	3 N.O.	_	Yes	_	125	12SBC53A4	2	22	30
SBC53BC	ne Time	r (A/O) Plus	Contact Co	nverter (CC)	with BFT	and Inst.	Trip						
60 Hz 10 Amp.	1-10	1.0	6 N.O.	0.5-5	3 N.O.	1	, Yes	_	48 125 250	12SBC53B3 B1 B2	.2	22 (9.9)	30 (13.6
50 Hz 10 Amp	1-10	1.0	6 N.O.	0.5-5	3 N.O.	1	Yes		125	12SBC53B4	2	22	30
SBC53C—T	wo Time	rs (A/O, B/O) Plus Cont	act Converte	or (CC) wi	th BFT an	d Inst. Trip		,				
60 Hz 10 Amp.	1-10	1.0	6 N.O.	0.5-5	3 N.O.	1	Yes	Yes	48 125 250	12SBC53C3 C1 C2	2	22 (9.9)	30 (13.6
50 Hz 10 Amp	1-10	1.0	6 N.O.	0.5-5	3 N.O.	1	Yes	Yes	125	12SBC53C4	2	22	30

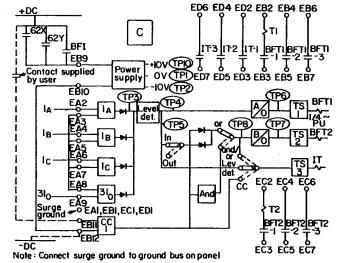


Fig. 7. Typical external conn. and logic for SBC53A

Fig. 8. Typical external conn. and logic for SBC53C

STA

Static Transformer Auxiliary Relay

GE Protective Relays

INTRODUCTION

The STA Static Transformer Auxiliary relay derived from the proven design of the SBC breaker failure relay, provides trip supervision for Sudden Pressure Relays found in Power Transformers. Three-Phase power transformers have always been susceptible to false tripping from a Sudden Pressure Relay (SPR) for high magnitude through-fault currents. These currents will cause the windings to vibrate, setting up pressure waves in the transformer. The pressure waves can cause a SPR to operate. False operation of a SPR can cause a costly outage of the transformer due to operational procedures in place to protect the investment of the transformer and preclude a hasty re-energization. As a result, many utilities have elected to use the SPR to provide an alarm only; losing protection of the transformer from the Sudden Pressure Relay.

APPLICATION

The STA Static Transformer Auxiliary Relay is a way to restore the functionality of the SPR by adding overcurrent supervision to the trip circuit of the SPR. For high magnitude faults, the overcurrent supervision circuit will block the operation of the SPR. However, for low or intermediate magnitude faults the overcurrent supervision will not operate, allowing the SPR to trip. Should a high magnitude fault occur in the transformer it is acceptable for the overcurrent supervision to operate since other means of protection such as an overcurrent relay or a differential relay will have sufficient current to detect and operate to clear the fault.

GENERAL DESCRIPTION

The STA201A relay contains the following basic components and features:

- A fast-reset current level detector with two independently adjustable pickup settings for phase and ground currents.
- 2. A/O timer adjustable from 10 1590 msecs for dropout control.
- B/O timer adjustable from 10 1590 msecs for supervision timer control.
- Three electrically separate contact output circuits. Two of these circuits have an electromechanical series target.
- 5. One output circuit that is used as a power supply alarm output.
- 6. A regulated power supply with undervoltage cutoff.
- Surge suppression of all AC and DC input circuits.

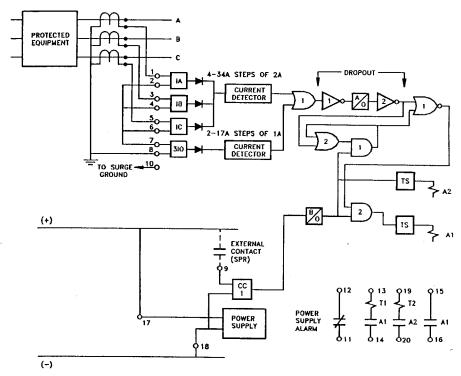


Fig. 2. STA Functional Block Diagram

SELECTION GUIDE---Drawout Case - 3φ + Ground

1 POLE OR 3 POLE	FREQ. (HZ)	RATED CT CURRENT (Amps)	CONTIN. CURRENT (Amps)	DC VOLTAGE	PHASE PICKUP (Amps)	GROUND CURRENT PICKUP(Amps)	OUTPUT CONTACTS	POWER SUPPLY CONTACTS	# TARGETS ② 0.15 AMP PICKUP	FUNCTIONAL BLOCK DIAGRAM	A/O TIMER 10-1590 MS	B/O TIMER 10-1590 MS	MODEL NUMBER	CASE SIZE		X WT IN (KG) SHIP
3 POLE	80	5	10	38-280	4 - 34 (2A STEPS)	2 - 17 (1A STEPS)	3 N.O.	1 N.C.	2	FIGURE 1	YES	YES	STA201A1A	M2	22 (10)	27 (12.3)

SECTION: 3

Pilot and Distance Relays

SCA51A, SCA52A Directional Comparison Blocking Auxiliaries 1	
NAA15 Ground Distance Auxiliaries 3	
NAA19 Out-of-step Auxiliaries 4	
NAA27 Transferred Trip Auxiliaries 5	
NAA30A Manual Synch Auxiliaries 7	
GCX, GCY, GCXY, GCXG, Phase Packaged Directional-distance 8	
CEB Offset MHO-Zone and Phase Packaged Directional-distance 12	
CEY, CEYG Zone Packaged Reactance and MHO Directional-distance	
CLPG Dual-polarized Directional Overcurrent Carrier Ground	
SLY, SLYG Static Zone Packaged MHO Distance	

SCA51A, SCA52A

Directional Comparison Blocking Auxiliaries

GE Protective Relays

DESCRIPTION

The Type SCA is a solid state carrier auxiliary relay designed for use in directional comparison carrier blocking relay schemes. It functions as the interface between the carrier pilot channel and the distance relays which control the carrier and trip the line terminals. The SCA relays include a variety of functions which are described as follows:

- RX Carrier Receiver Auxiliary.
 - This unit is driven by the carrier receiver via either a 180 milliamp nominal output or by a high speed reed relay contact. An optical isolation interface is used between the carrier channel and the RX unit.
- TTZ Tripping Coordination Delay Timer.

 This unit provides the necessary timing to coordinate the blocking of tripping for faults external to the protected line.
- RI Reclosing Initiating.
 This unit initiates circuit breaker reclosing.
- A Tripping Auxiliary.
 This unit provides the contact capability to carry 30 amperes for circuit breaker tripping duty.
- TB Transient Blocking.

 This unit provides a transient blocking function to improve security against a relay misoperation during a fault current reversal.
- MX Phase Relay Auxiliary.

 This unit is energized by the operation of the phase MT to stop carrier blocking.
- GX Ground Relay Auxiliary.

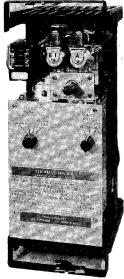
 This unit is energized by the operation of the ground relay functions to stop carrier blocking.

Front Panel Controls

— Control Voltage Switch Three Position: 48V, 110/125V, 220/250V.

- RX Input Switch
 - Four Position: 300 ma, 48V, 110/125V, 220/250V.
- TTZ Delay Pickup Adjustment Continuously adjustable 3 to 40 ms; calibration points at 3, 10, 20, 30, 40 ms.

Operating Specifications


- All voltage operated units will pick up at 80% of nominal dc voltage rating determined by the Control Voltage Switch position.
- RX unit on the 300 ma position will pick up at 100 ma receiver current minimum and can remain continuously energized and picked up at 300 ma current.

Timing Specifications

- RX For directional comparison carrier blocking; 1-2 ms pickup, 5 ms dropout, (select RX card jumpers). For other applications can be independently set for 1-2 ms or 5 ms pickup or dropout.
- TTZ Pickup adjustable over range of 3 to 40 ms, dropout is less than 5 ms.
- RI Pickup 1 cycle, dropout 6 to 10 cycles.
- Pickup 4 ms, dropout 2 to 3 cycles.
- GX, MX, TB 1 to 3 ms pickup and dropout.

Unit Contact Ratings

- RX, TTZ, TB, MX, GX, reed relays: 50 watts resistive maximum load, 300 volts dc maximum voltage, 3 amps dc make and carry current. Contacts for external use are surge protected.
- RI, A; telephone relays:
 - 3 amps, carry continuously; 30 amps, make and carry for breaker tripping. Standard telephone relay contact interrupting rating, contact gap 15 mils.

(Photo 8043691)

Fig. 1. Type SCA51A Carrier Auxiliary Relay

APPLICATION

There are two basic models of the SCA relay:

SCA51A - for use with the static component relays - SLY8A, SLYG81A. This model contains the functions RX, TTZ, RI, A and TB.

SCA52A - for use with electromechanical relays. This model contains the functions RX, TTZ, RI, A, MX and GX.

The SCA carrier receiver function RX is directly compatible with the GE Type CS28A carrier receiver. This receiver provides a 180 milliamp nominal output (approximately 300 ma maximum). As an optional alternative the CS28A carrier can be provided with a high speed contact as the interface. In addition, the RX circuit also provides a separate optical isolation interface. The SCA relay can also be used with other carrier channels or with microwave equipment through the use of a contact interface between the receiver and the RX circuit. The TTZ timer, with its wide adjustment range, will provide adequate coordination time delay as required by other channel operating speeds.

Dimensions	. Section 16
How to Order	. Section 1
Instruction Books	. Section 17
Target and Contact Data	. Section 16
Relay Standards	. Section 16

SCA51A, SCA52A

Directional Comparison Blocking Auxiliaries

GE Protective Relays

SELECTION GUIDE—SCA Carrier Auxiliary Relays

Device	Control Volts	Units	Target Seal-in,	Type Carrier	Interface	Model	Case	Approximate Wt lb (Kg)	
	dc	Included	Amp	Carrier	1,,,,,,,,,	Number	Size	Net	Ship
YPE SCA	1A—Use with st	atic component	relays; SLY81A,	SLYG81A.					
85	48, 110/125,	RX, TTZ RI, A, TB	0.6/2	CS28A	Direct from carrier receiver or contact	12SCA51A11A	M-2	25(11.3)	31(14.1)
	220/250	кі, А, Ів	1.0, 2	Other	Contact only	12007.0			
YPE SCA	52A—Use with	electromecha	nical relays; CE	Y52, CEYG5	1A, CLPG 12C				
85	48, 110/125, 220/250	RX, TTZ, RI	CS28A Direct from carrier receiver or contact 12SC		12\$CA52A11A	M-2	25(11.3)	31(14.1)	
	220/250	A, MX, GX	5.5, 2	Other	Contact only	123CA32ATTA	2	25(11.5)	51(14.1

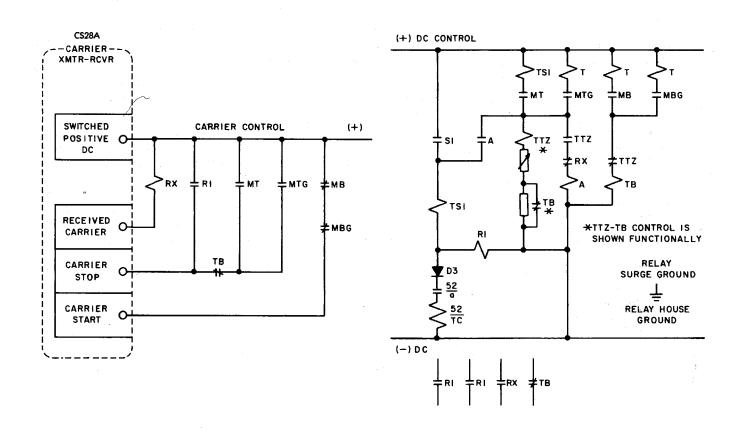


Fig. 2. Simplified external connections SCA51A used with static component relays.

Ground Distance Auxiliaries

GE Protective Relays

7241

DESCRIPTION

The Type NAA relay is the general designation of a large family of special purpose auxiliary relays. Most NAA relays have two or more telephone type auxiliaries mounted in the regular drawout case. In some specific types an overcurrent function may also be included.

APPLICATION Ground Distance Relay Auxiliaries

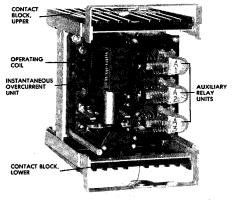
NAA15E — For Ground Step Distance scheme with GCXG51 and GCXG53 phase packaged relays. In this application the three auxiliary units and plunger type overcurrent unit are interlocked with the mho units of the GCXG relays to permit 1st and 2nd zone tripping for single-phase-to-ground faults only.

NAA15H—For use with Ground Distance scheme with CEYG51 and 53 and torque controlled overcurrent relays such as the Type IAC80 and CFC17A.

BURDENS—Typical for NAA15E

The ac burden of the instantaneous unit

is shown in Table 1 for the available current ranges. The values in Table 1 are with the armature set for minimum pickup and in the dropped-out position.


Table 1
Burden Data at 60 Hz Instantaneous
OC Unit

Rated		Cal	At 5	Amp	At M	in PU
	Amps	Range	Watts	VA	Watts	VA
	6	2-8	3.6	11.5	0.6	1.7
	3	1-4	12.7	41	0.6	1.7
	1.5	0.5-2	55	165	0.6	1.7

RATINGS

The relays can be furnished with instantaneous overcurrent units having ac ratings and calibration ranges as shown in Selection Guide. The overcurrent units are suitable for operation on either 50 or 60 hertz, but are not rated for continuous operation in the picked-up position.

The contacts of the auxiliary A units and the instantaneous overcurrent unit will make and carry momentarily 30 amperes dc at control voltages of 250 volts or less. These contacts will carry 3 amperes continuously and have an interrupting rating as shown in Table 2.

(Photo 8035575)

Fig. 1. Typical Type NAA15E ground distance auxiliary

Table 2 Interrupting Ratings A Unit Contacts

Volts Dc	Current Amps					
VOIIS DC	Inductive ①	Non-Inductive				
48 125 250	1.0 0.5 0.25	3.0 1.5 0.75				
Volts Ac						
115 230	0.75 0.5	2.0 1.0				

① Average trip coil.

SELECTION GUIDE

Type NAA15—Ground Distance Auxiliaries—50/60 Hertz

Volts	Inst OC	Rated	Mechanical	OC Unit@	Model	Case	Approx V	Vt Lb (Kg)
Dc	Amp Range	Amps	Target Contacts		Number	Size	Net	Ship
Type NAA15E-Fo	r Use With Pha	se Packagi	ng Type GCX(•				
48/125/250 48/125/250 48/125/250	2-8 1.4 0.5-2	6 3 1.5	None None None	2 NO 2 NO 2 NO	12NAA 15E5A 12NAA 15E6A 12NAA 15E7A	S-2	14(6.4)	18(8.2)
24/48/125	1-4	3	None	2 NO	12NAA 15E8A	7 3-2		
48/110/220	0.5-2	1.5	None	2 NO	12NAA 15E9A			
Type NAA15H-Fo	r Use With CE	'G51-53 ar	nd IAC80 With	CFC 17A				,
48 125	2-8 2-8	6	None None	1 NO 1 NO	12NAA 15H2A 12NAA 15H1A	S-2	14(6.4)	18(8.2)

² Auxiliary unit contacts are wired to relay studs as required.

Dimensions	.Section 16
How to Order	. Section 1
Instruction Books	. Section 17
Target and Contact Data	. Section 16
Relay Standards	

Out-of-Step Auxiliaries

GE Protective Relays

DESCRIPTION

The Type NAA19B is an auxiliary relay for use with an angle impedance relay type such as CEX57E for tripping on system out-of-step conditions. This relay contains a number of telephone type auxiliary units plus a type PJC instantaneous overcurrent unit and one target seal-in unit all mounted in an M-1 case.

APPLICATION—Section B

In general the NAA19B is applied in conjunction with the CEX57E to detect system out of step conditions and to initiate tripping of the proper local and/or remote breakers in order to separate the system. It is important to note that these relays should be applied at those locations where system studies indicate that an out of step condition can be detected. However, the breaker(s) that should be tripped, to properly separate the system, with generation balancing load, may be remotely located. If this is the case some sort of transferred or remote tripping scheme will be required in addition to the CEX57E and NAA19B relays.

In this scheme, the relays detect the out of step condition by the sequential operation of the angle impedance units in the CEX57E relay as the apparent impedance sweeps across the R-X diagram in the manner outlined in Fig. 1. From Fig. 1 it is apparent that the angle impedance characteristics extend, almost without

practical limit, in both the "forward" and "reverse" directions.

During light load conditions on the system, it is possible, due to reactive power transfer, that the apparent (load) impedance as seen by the CEX relay will plot in the vicinity of the CEX characteristics rather than near the R axis as in the case of appreciable real power flow. With slight variations in this load it is possible for the apparent impedance to vary in such a manner as to wander across the angle impedance characteristics at a point quite remote from the origin in the R-X diagram. This would appear as an out of step condition to the CEX-NAA combination except for the instantaneous overcurrent unit which supervises the scheme.

The overcurrent unit in the NAA19B relay is a plunger type PJC and is not intended for operation in the continuously picked up position. Thus, the overcurrent unit should be set for a pick-up of at least 15 percent above the maximum full load current. This will automatically prevent any false operation during light load conditions.

RATINGS

The NAA19B relays covered by this section are available with dc control voltages as indicated in the Selection Guide. The telephone type relay contacts will make and carry 30 amperes momentarily at 250 volts dc or less and have interrupting ratings as indicated in Table A.

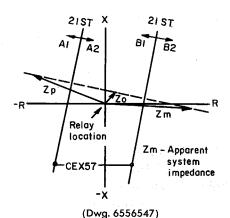


Fig. 1. Typical Characteristic CEX57 with NAA 19B for Out-of-Step Tripping

TABLE A
Interrupting ratings X units contacts

Volts	Interrupt Amps					
VOIIS	Inductive①	Non-Inductive				
125-dc	0.5	1.5				
250-dc	0.25	0.75				
115-60 Hz	0.75	2.0				
230-60 Hz	0.5	1.0				

¹ Inductance of Average Trip Coil.

SELECTION GUIDE

Type NAA 19B — Out-of-step Auxiliaries — 50/60 Hertz

Volts	Instantaneous Overcurrent@	Rated	Target Seal-In	X1, X2, X4, X5 Time DO	Model	Case	Approx '	Approx Wt. Lb (Kg)	
Dc	Amp Range	Amps	Amps	Milliseconds	Number	Size	Net	Ship	
48 125 250	2-8	6	0.2/2	200	12NAA 19B8A 12NAA 19B5A 12NAA 19B10A	M-1	21(9.6)		
125 250	4-16	12			12NAA 19B2A 12NAA 19B4A			26(11.8)	
110 220	2-8	6			12NAA 19B7A 12NAA 19B9A				
110 220	4-16	12			12NAA 19B3A 12NAA 19B6A]			

② The PJC inst. overcurrent unit is not designed to be operated continuously in the picked up position. NOTE—For Information on the type CEX57 Relay, see Section 10.

Transferred Tripping Auxiliaries

GE Protective Relays

APPLICATION Transferred Tripping Auxiliaries

NAA27AA — For dual channel transformer differential equipment transferred tripping with audio tones or frequency shift carrier, with automatic throw-over to single channel. The relay includes three telephone type units for the functions of X1, X2 and TX and a target/seal-in unit.

NAA27AC—For use in permissive overreaching line protection schemes with single channel audio tone equipment or frequency shift carrier. Included in the relay are three telephone type units for the functions of BX, RI and TTZ and a target. TTZ pick-up time must be specified.

NAA27AD—Intended for use in permissive underreaching line protection schemes with single channel audio tone equipment or frequency shift carrier. Included in the relay are two telephone type units for the functions of BX and RI and a target.

NAA27H—For use in direct and permissive transmission line underreaching schemes with Type 51 channel. This auxiliary includes three telephone type relay units for the functions of GX, TX, and RI and a target/seal-in unit.

NAA27K—Intended for use in direct and permissive transmission line scheme when multi-terminal lines are involved. This relay is required in addition to the other necessary transferred trip auxiliaries and includes two telephone type units for the functions of GX and TX.

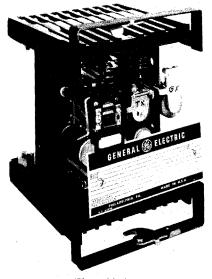
GENERAL AND ORDERING

For permissive overreaching schemes the TTZ unit is connected in series with the trip contact (T) of the receiver and introduces a slight coordinating delay into the scheme. This TTZ unit is picked up by the local overreaching phase or ground relays which key the local transmitter. The time delay pickup setting of TTZ should be set for approximately 3-4 milliseconds longer than the release time of the channel being used.

This setting may be specified on the requisition and will be set in final test at the factory.

NAA27L—Intended for use in direct and permissive schemes where Type 51 frequency shift carrier is used as the channel. This relay includes four telephone type units for the functions of GX, TX, RI and TTY, and a target/seal-in unit. The GX, TX and RI units are identical to the corresponding units in the NAA27H relay. TTY is a high speed keying relay for the type 51 carrier channel.

NAA27M — A special purpose auxiliary relay for use at the receiving end terminal in transformer differential transferred tripping schemes with a Type 51 carrier or an audio tone channel. This relay includes two telephone type units for the functions of GX and TX and a target/seal-in unit.


NAA27N—For use in permissive overreaching schemes in conjunction with line relays and other auxiliary devices. Use with Type 51 carrier or audio tone channel. The NAA27N includes the functions of BX, TTY and TTZ. If the circuit to be protected cannot have a power reversal on clearing an external fault, the TTZ function is not needed and studs 1 and 2 should be jumpered together. TTZ pickup time must be specified.

NAA27S—For use in permissive overreaching line schemes where single channel tone equipment with receiver logic module is used. This relay includes three telephone type auxiliary units for the functions of BX, RI and TTZ. Otherwise, similar to the NAA27N. TTZ pick-up time must be specified.

NAA27Y—For use with tone equipment that includes the receiver logic module. The functions included are CX1, CX2 and TX and a target/seal-in unit. One NAA27Y relay is required at each terminal in the scheme.

RATINGS

The telephone relay contacts will make and carry 3 amp continuously or 30 amp dc for tripping duty at control voltages of 250V dc or less. Some of the Type NAA27 relays such as NAA27AA, NAA27AC and NAA27AD have tripping diodes. For such applications these diodes will carry 10 amp continuously or 30 amp for tripping duty and will withstand a maximum of 600V in

(Photo 8043136)
Fig. 1. NAA27M auxiliary relay

the reverse direction. The blocking diodes generally have a rating of 600V in the reverse direction and will carry 1 amp in the forward direction.

The interrupting rating of the telephone relay contacts such as "RI" and "BX" are listed in Table 1, below.

Table 1
Type NAA27 Interrupting Ratings

Ac Volts	Amperes					
AC VOIIS	Inductive①	Non-Inductive				
115 230	0.75 0.5	2.0 1.5				
Dc Volts						
48 125 250	1.0 0.5 0.25	3.0 1.5 1.0				

① Average trip coil.

Dimensions	Section 16
How to Order	
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	

Transferred Tripping Auxiliaries

GE Protective Relays

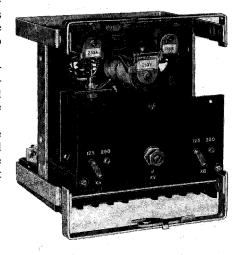
Device	Control	Functions	Torcat	TTZ	Model	Case	Approx \	Vt Lb(Kg)
No.	Volts dc	Included	Target Seal-in Amp	TD Pickup Milliseconds	Number .	Size	Net	Ship
YPE NAA2	7AA — Dual	Channel Direct Wit	h Audio Tones or F	requency Shift Car	rier	-		
94	48 125	X1, X2, TX, TSI X1, X2, TX, TSI	0.6/2.0		12NAA27AA2A 12NAA27AA1A	S-2	14(6.4)	18(8.2)
YPE NAA2	7AC — Permi	issive Overreaching	and Single Chanr	nel Audio Tones or	Frequency Shift Carr	ier		,
94	48 125 250	BX,RI,	(Target Only) 0.6/2.0	11-21 11-21 11-21	12NAA27AC3A 12NAA27AC1A 12NAA27AC2A	M-2	21(9.6)	27(12.2
YPE NAA2	7AD — Perm	issive Underreachir	ng and Single Chai	nnel Audio Tones o	r Frequency Shift Ca	rrier	1	interior
94	48 125 250	} BX, RI	(Target only) 0.6/2.0		12NAA27AD2A 12NAA27AD1A 12NAA27AD3A	M-2	20(9.1)	26(11.8
YPE NAA2	7H — Direct	and Permissive Sch	emes With Type 5	1				
94	48 125 250 125	GX, TX RI TSI	0.6/2.0 0.6/2.0 0.6/2.0 0.2/2.0	_ _ _ _	12NAA27H17A 12NAA27H16A 12NAA27H15A 12NAA27H19A	S-2	13(5.9)	17(7.7)
YPE NAA2	7K—Multi T	erminal Auxiliary						
94	48 125 250	GX,TX	- - -	_ _ 	12NAA27K17A 12NAA27K16A 12NAA27K15A	S-1	12(5.4)	16(7.3)
YPE NAA2	7L—Direct l	Jnderreaching Aux	iliary With Type 5	l Channel				
94	48 125 250	GX,TX RI,TTY TSI	0.6/2.0	=	12NAA27L30A 12NAA27L29A 12NAA27L28A	S-2	14(6.4)	18(8.2)
YPE NAA2	7M — Transf	ormer Differential	Auxiliary With Typ	e 51 Channel	*			
94	48 125 250 125	GX,TX TSI	0.6/2.0 0.6/2.0 0.6/2.0 0.2/2.0	- - - - -	12NAA27M17A 12NAA27M16A 12NAA27M15A 12NAA27M18A	\$-2	13(5.9)	. 17(7.7)
YPE NAA2	7N — Permis	sive Overreaching	With Type 51 or A	udio Tones				
94	48 125 250 48 125 250	BX TTY TTZ		12-25 12-25 12-25 20-40① 20-40 20-40	12NAA27N33A 12NAA27N32A 12NAA27N31A 12NAA27N36A 12NAA27N35A 12NAA27N34A	\$-2	13(5.9)	17(7.7)
YPE NAA2	7S — Permis	sive Overreaching	With Audio Tones –	-When Receiver Lo	gic Module Is Used	24 1 1		. 4. 11
94	125	BX,RI TTZ	(Target only) 0.6/2.0	11-21	12NAA27S1A	S-2	13(5.9)	17(7.7)
YPE NAA2	7Y—Dual C	hannel Direct With	Audio Tones — Wh	en Receiver Logic I	Module Is Used		•	
94	125	CX1,CX2		1		S-2	1	18(8.2)

①For Type 51 carrier channel.

NAA30A Auxiliary

For Relay Supervision of Manual Synchronizing

GE Protective Relays


APPLICATION Auxiliary For Relay Supervision of Manual Synchronizing

NAA30A—Intended for use with GXS11B synchronizing relay to provide supervision of manual synchronizing. Included in the NAA30A are three telephone type auxiliary units. This combination will allow the operator to synchronize only if permission is received from the GXS11B indicating the bus and machine voltage have not passed the in-phase condition and the machine is running faster (slower by reconnection) than the system. The three auxiliaries included in the NAA30A are—25XA, 25XB and 25XV. Figure 2 illustrates the typical external ac connections for the scheme.

and bus PT circuits, each of which are rated 120V. However, since it is the vector difference of these voltages that is applied to (T1), the transformer must be rated for 240V which occurs when the two voltages are 180 degrees apart.

The 25XV input transformer T1, primary winding has a tap which can be connected for a phase to neutral potential transformer connection by reversing the leads on study 5 and 5A.

The telephone relay contacts will make and carry 30 amperes momentaruly and can carry 3 amperes continuously. The interrupting capabilities for each contact is listed in Table 1.

(Photo No. 8041547) • Fig. 1. Type NAA30A Auxiliary Relay

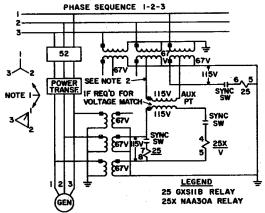
RATINGS

The two auxiliary circuits, 25XA and 25XB, are continuously rated at 125 or 250 volts dc. The voltage selection is made with two links (one per unit) located and clearly identified on the front of the relay. The voltage auxiliary, 25XV, is energized from an input transformer (T1) designed to carry 240 volts continuously. Transformer (T1) is connected in the machine

INTERRUPTING RATINGS Table 1

Volts Dc	Interrupt	Amps
	Inductive①	Non- Inductive
125 250	0.5 0.25	1.5 0.75

① Average trip coil.


SELECTION GUIDE Type NAA30A — 120 V Ac Auxiliary For GX\$11B Manual Synchronizing

	Control		0			Approx V	Vt lb/(Kg)
Frequency HZ	Volts dc	Functions Included	Dropout Range-25XV Volts	Model Number	Case Size	Net	Ship
60 50 50	125/250 110/220 125/250	25X, 25XB, 25XV	30-70	12NAA30A 1A 12NAA30A3A 12NAA30A2A	S-1	14(6.4)	18(8.2)

② Unless specified otherwise factory setting is 62 volts.

NOTE:

See Section 9 for Type GXS relays.

NOTE 1-HIGH SIDE ASSUMED TO LEAD LOW SIDE BY 30° UNDER MORMAL SYNCHRONIZING CONDITIONS THE VOLTAGES SUPPLIED TO THE RELAYS FROM THE BUS & MACHINE PT'S SHOULD BE NEAR EQUAL.

NOTE 2-SCHEME AS SHOWN IS FOR CLOSING ON FAST SCOPE FOR CLOSING ON SLOW SCOPE, CONNECT THIS LEAD TO PHASE 3.

(0246A3380 SH. 1-0)

Fig. 2. Typical External Ac Connections for NAA30A and GXS11B to Supervise the Operator When Synchronizing a Generator onto a System, Zero Degree Cut-off.

REFERENCES:

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16

Pilot and Distance Relays

Phase Packaged Directional-distance Relays

GE Protective Relays

For Two, Three, and Four Zone Directional-distance Protection of Transmission Lines

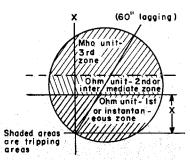


Fig. 1. Typical steady state operating characteristics.

Type GCX51A relay

DESCRIPTION

GCX51 is the type designation for a family of single phase, three-zone phase packaged relays. The first- and second-zone distance measurements are made by a unit having a reactance or ohm type characteristic and the third zone has a directional mho characteristic. See Fig. 1 for R-X diagram.

GCY51 is the type designation for a family of single phase two-zone and three-zone mho phase distance relays for transmission line protection. See Fig. 2 for R-X diagram.

A GCY51F is a single phase mho relay with two zones of protection. The M1 and M2 units have a 75' angle of maximum torque and M1 has provision for 0.5 ohm offset phase to neutral. The M2 unit has provision for a forward offset of 0-4 ohms phase to neutral, thus giving a conventional two-zone relay or a distinctive "figure eight" characteristic as required. See Fig. 4 for R-X diagram.

The GCXY51 is a single phase, four-zone phase distance relay with two zones of reactance characteristics. A third zone is provided by a unit having a directional mho characteristics, and a fourth zone is provided by a unit with an offset (optional) mho characteristic. See Fig. 3 for R-X diagram.

Typical Terminal Packages — 60 Hz

1—SAM48	1/110/125/220/250V DC
3-GCY51A1A	0.75-30 Ohm Range
1-SAM	3/110/125/220/250V DC

3-GCY51F1A	0.75-30 Ohm Range
1—SAM48/	110/125/220/250V ĎC

3-GCXY51A12D 1-SAM48/1	0.1-4 Ohm Range
1-SAM48/1	10/125/220/250V ĎC

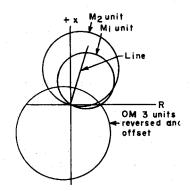


Fig. 2. Typical steady state operating characteristics
Type GCY51A relay

APPLICATION — Phase Faults

Directional-distance relaying equipments provide high-speed protection for important transmission lines, and should be considered whenever other relaying is inadequate. The current level is seldom a factor in the time co-ordination of distance relaying. Therefore, changes in generating capacity or in the configuration of the system will not affect distance relaying and complicated short-circuit studies are unnecessary for their application. The length and the loading of a line determine the specific type of distance relay to be applied.

Short and Medium Lines are best protected by the Type GCX distance relay which operate on the reactance principle. Such relays are particularly applicable to short lines, where arc resistance can appreciably affect distance measurement by other means. Relay accuracy and insensitivity to transients permit instantaneous tripping over a maximum percentage of the protected line.

Long Lines are best protected by the Type GCY relay (popularly called the mho relay) because of its greater freedom from the adverse effect of tripping on power swings or loss of synchronism between generating stations.

For lines subject to power swings that are severe enough to affect even the mhotype relays, supplementary means are available to prevent improper operation during the system oscillations.

The GCY51A has 3 mho type units and provides three-zone time distance protection. The OM3 unit can be set in the forward or reversed direction and can be offset for either.

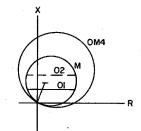


Fig. 3. Typical steady state operating characteristics.
Type GCXY51
(OM4 shown without offset)

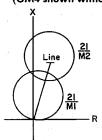


Fig. 4. Typical steady state operating characteristics.
Type GCY51F

Three-Zone Operation: The Types GCX or GCY (phase-fault) relays in conjunction with a timing relay provide instantaneous operating time for up to 90 percent of the protected line section; a short time for the end zone (remaining 10 percent) and near end of the next section; and a longer time (backup) for faults on more distant sections.

The GCY51F has two Mho units, M1 and M2. With zero offset for the M2 unit, the relay provides regular two-zone protection. With the M2 unit offset in the forward direction, the relay can provide a very desirable "figure eight" characteristic with two-zone protection for long lines that may carry heavy loads. The M1 unit may be used to provide instantaneous tripping for a portion of the protected line and the M2 unit used with a timer to provide time delay backup tripping for the balance of the line and a portion of the next line section. The trip contacts of both units may be connected in parallel to provide the overreaching characteristic needed for directional comparison or transferred tripping pilot relaying schemes.

REFERENCES:

Dimensions	Section 16
How to Order	Section 1
Instruction Books	
Target and Contact Data	Section 16
Relay Standards	Section 16

2 CCV514414

Phase Packaged Directional-distance Relays

GE Protective Relays

APPLICATION — Phase Faults

The GCXY51 phase distance relay is similar to the GCY51A except it has four zones of protection. Zone one is provided by a reactance unit, O1, under the supervision of the directional mho unit M. The second zone reactance characteristic, O2 is provided by the auxiliary unit OX which is picked up by the timer which extends the reach of the reactance unit. Zone three is provided by the mho unit M by a contact of the timer. The M units can also provide the carrier stop function by carrier auxiliary units. Initiation of carrier is by means of the normally closed contacts of OM, which would be connected to operate for faults in the reverse direction with offset. Thus, this relay is well suited for application in a step distance scheme or with directional comparison carrier.

GROUND FAULT PROTECTION

The three-zone GCXG51A relay is intended to provide step distance ground protection for transmission and distribution circuits. This relay is similar to the GCX51 phase relay except it provides first- and second-zone protection for sin-

gle phase to ground faults plus third-zone protection for single phase to ground and double phase to ground faults. Also, the relay can provide instantaneous protection for up to 80 percent of the protected line section and a short time delay for the remaining 20 percent.

The GCXG53A ground distance relay is similar to the GCXG51 except for use on longer transmission lines. Significant differences:

- a. The mho unit has an additional current circuit to provide zero sequence current compensation.
- b. The mho unit uses median voltage polarization.
- c. The mho unit is provided with an adjustment to vary the angle of maximum torque over the range of 60 to 75 degrees lag.

CONTACT RATING

The contacts of these relays will close and carry momentarily 30 amperes DC. However, the circuit breaker trip circuit must be opened by an auxiliary switch contact or other suitable means since the relay contacts have no interrupting rating.

BURDEN DATA Maximum Potential Burdens (Total Relay)

Relay	Watts	Vo.	
GCX51A, B,H GCX51M, N, R GCY51A GCY5F GCXY51A GCXG51A	30 27 41.8 — 42.3 25.7	31 30 42.2 	60 Hz 120V 5 Amp and 100%
GCXG53A	25.7	30.9	tap

For current burdens and potential burdens other than 100 percent tap. See instruction book for details.

Typical Ground Terminal Package for Normal and Short Lines

3-GCXG51A-A

1-SAM

1-NAA15E

1-0367A0266G1 Aux. transf.

Typical Ground Terminal Package for Long Lines

3-GCXG53A-A

1-SAM

1-NAA15E

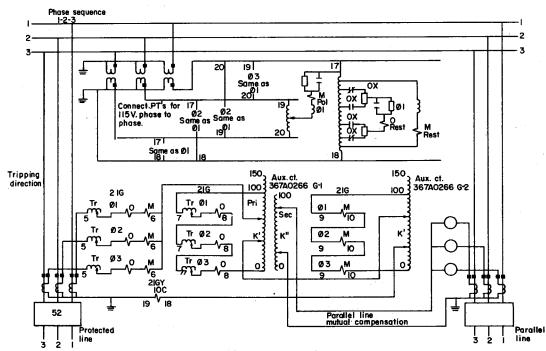
1-0367A0266G1 Aux.

1-0367A0266G2 transf.

SELECTION GUIDE—3 Zone-phase Reactance

Freq.	Control	Mho Unit	Ohm Unit	Target	O.C. Unit	Model	Case	Approx. Wi	Vt. in lbs (KG)	
Hz	Volts Dc	Range (Ohms)	Range (0-N. Ohms)	Seal-in (Amps)	Range (Amps)	Number	Size	Net	Ship	
ANDARD	REACH—GCX	51A-Mho Uni	t Angle of Max. T	orque 60°			4			
60	48/125/205	1-4 2.5-10 2.5-10 2.5-10	.25-10 .25-10 .25-10 .5-20	0.6/2.0 0.6/2.0 0.2/2.0 0.6/2.0		12GCX51A23A 12GCX51A12A 12GCX51A13A 12GCX51A24A	L-2	32	38	
50	48/125/250 48/110/220	2.5-10 2.5-10	.25-10 .25-10	0.6/2.0 0.6/2.0		12GCX51A14A 12GCX51A20A	Ī ·	(14.5)	(17.2)	
HORT REA	ACH-GCX51N	1-Mho Unit Ar	gle of Max. Torqu	ле 60°	*		-t	ł		
60	48/125/250	1-4	.1-4	0.6/2.0		12GCX51M1A		T		
50	48/125/250 48/125/250 48/110/220 48/110/220	1-4	.1-4	0.2/2.0 0.6/2.0 0.6/2.0 0.2/2.0		12GCX51M2A 12GCX51M3A 12GCX51M4A 12GCX51M5A	1-2	32 (14.5)	38 (17.2)	
TANDARD	REACH-GCX	51B—Same a	s GCX51A Except	with Inst. O.C.	Unit					
60			05.10	0.6/2.0 0.6/2.0	4-16 2-8	12GCX51B12A 12GCX51B13A		:		
	48/125/250	2.5-10	.25-10	0.6/2.0 0.2/2.0	1-4 2-8	12GCX51B14A 12GCX51B16A	L-2	34	40	
50		2.5-10	.25-10	0.6/2.0 0.6/2.0	2-8 4-16	12GCX51B15A 12GCX51B20A	(15.4)	(15.4)	(18.1)	
HORT REA	ACH — GCX51N	I—Same as G	CX51M Except wi	th Inst. O.C. Uni	t				•	
60	48/125/250 24/48/125 24/48/125 48/125/250	1-4	.1-4	0.6/2.0 0.6/2.0 0.6/2.0 0.2/2.0	4-16 4-16 10-40 4-16	12GCX51N1A 12GCX51N3A 12GCX51N4A 12GCX51N6A	1-2	34	40	
50	48/125/250 24/48/125	1-4	.1-4	0.6/2.0 0.6/2.0	4-16 2-8	12GCX51N2A 12GCX51N5A		(15.4)	(18.1)	
ANDARD	REACH-GCX	51H—Same <i>A</i>	s GCX51A Excep	75° Angle Max	x. Torque		1. 1.			
60	48/125/250	2.5-10	.25-1	0.6/2.0		12GCX51H2A	L-2	34(15.4)	40(18.1	
HORT REA	ACH-GCX51R	—Same as GO	XM Except 75° A	Ingle Max. Torqu	ve			•		
60	48/125/250	1-4	1-4	0.6/2.0		12GCX51R1A	i-2	34(15.4)	40(18.1	

Phase Packaged Directional-distance Relays


GE Protective Relays

SELECTION GUIDE—3 Zone Ground Distance

	Control	Mho Unit	·	Ohm-Unit		Required		Approx. W	t. Lb (Kg)
AC Rating	Volts DC	Phase-Neut. Range Ohms	Target Seal-in Amp	Phase-Neut. Ohms	Model Number	Per Terminal	Case Size	Net	Ship
TYPE GC	XG51-With 60°	Max. Torque A	ngle						
60Hz 120V 5 Amp. and	48/125/250	1-30 1-30 2-60 1-30	0.6/2 0.6/2 0.6/2 0.2/2	0.1-4 0.25-10 0.5-20 0.25-10	12GCXG51A11A 12GCXG51A12A 12GCXG51A15A 12GCXG51A13A				
70V 5 Amp. Rest.	24/48/125 24/48/125	1-30 1-30	0.6/2 0.6/2	0.1-4 0.25-10	12GCXG51A23A 12GCXG51A22A	3-GCXG 1-SAM 1-NAA 15 1-Aux Trans(3)①	L-2	34(15.4)	40(18.1)
50Hz 120V 5 Amp. and 70V 5 Amp. Rest.	48/125/250 48/110/220 48/125/250	1-30 1-30 2-60	0.6/2 0.6/2 0.6/2	0.25-10 0.25-10 0.5-20	12GCXG51A16A 12GCXG51A24A 12GCXG51A21A				
Type GCX	KG53-3 Zone G	round Distance	-Long Lines v	with 60/75° N	lax. Torque Angle				
60 Hz 120V 5 Amp. and 70V 5 Amp. Rest.	48/125/250	1-30 1-30 2-60	0.6/2 0.2/2 0.6/2	0.25-10 0.25-10 0.5-20	12GCXG53A3A 12GCXG53A2A 12GCXG53A1A	3-GCXG53 1-SAM14		0.415	
50 Hz 120V 5 Amp. and 70V 5 Amp. Rest.	48/125/250 48/125/250 48/110/220	1-30 1-30 1-30	0.6-2 0.6-2 0.6-2	0.1-4 0.25-10 0.25-10	12GCXG53A5A 12GCXG53A4A 12GCXG53A6A	1	L-2	34(15.4)	40(18.1)

① NOTES:

(1) For SAM and other timing relays, See Section 6.
(2) For NAA15 auxiliaries. See page 3-13.
(3) One auxiliary transformer No. 0367A0266G1 required for each terminal of GCXG51 relays.
(4) For GCXG53 terminal—one No. 0367A0266G1 and one 0367A0266G2.

(Drawing 0116B9419) Fig. 5. Typical External Connections Three Type GCXG53A per Terminal

Phase Packaged Directional-distance Relays

GE Protective Relays

SELECTION GUIDE-4 Zone Phase Distance

60/75° Max. Torque Angle M Unit—75° Max. Torque Angle OM Unit

TYPE GCXY51 — 1st and 2nd Zone Reactance, 3rd and 4th Mho Distance

AC	Control	Unit		Mho Units Phone-Neut. Ohms OM Target Model Required Case		Target Model		OM Target Model		OM Target Mode		OM Target Model		Case	Approx Wt(Kg)	
Rating	Volts DC	Phase-Neut. Ohms	м	ОМ	Offset Ohms	Seal-In Amp.	Number	Per Terminal	Size	Net	Ship					
60Hz 120V 5 Amp	48/125/250 48/125/250	0.1-4 0.25-10	1-12 1-12	3-30 3-30	0-0.5 0-0.05	0.6/2 0.6/2	12GCXY51A12D 12GCXY51A11D	3-GCXY 1-SAM	L-2D	43(19.5)	50(22.7)					

3 Zone Phase Mho Distance

۸.		Mho Units to Neutral		OM3	Maximu	m Torque	Target	Model Number	Required Per	Case Size	App Wt Lb	rox o(Kg)
AC Rating	M1	M2	ОМЗ	Offset Ohms	M1 M2	ОМЗ	Seal-in Amp.	Number	Terminal	Size	Net	Ship
TYPE GO	Y51A									A second	7	
60Hz 120V 5 Amp	0.75-30 0.75-30	1-30 1-30	3-30 3-30	0-0.5 0-0.5	60°	75° 75°	0.6/2 0.2/2	12GCY51A1A 12GCY51A2A A2A	3-GCY	L-2	42(19.1)	49(22.2)
50Hz 120V 5 Amp	0.75-30	1-30	3-30	0-0.5	60°	75°	0.6/2	12GCY51A3A	1-SAM	l-2	42(19.1)	49(22.2)
TYPE GO	Y51D—Si	milar to	GCY51A	— Except	M2-75	Max. To	rque Ángle					
					M1	M2 OM3				N.		
60Hz 120V 5Amp	0.75-30	1-30	3-30	0-0.5	60°	75°	0.6/2	12GCY51D1A	3-GCY 1-SAM	L-2	42(19.1)	49(22.2)
TYPE GC	Y51H—Si	milar to	GCY51A	— Except	all units	75° Max	. Torque Ang	gle				
50Hz 120V 5 Amp	0.75-30	1-30	3-30	0-0.5	75°	75°	0.6/2	12GCY51H3A	3-GCY 1-SAM	L-2	42(19.1)	49(22.2)
TYPE GC	Y51F-2	Zone Ph	ase Mho	or "Figur	e 8″							
۸۲	Mho l Phase to Ne		M1 Offset	M2 Offset	Maximu	m Torque	Target Seal-in	Model Number	Required Per	Case Size	Approx. Wt Lb(Kg)	
AC Rating	M1	M2	Ohms	Ohms	M1	M2	Amp.	Nomber	Terminal		Net	Ship
60Hz 120V	0.75-30	1-30	0-0.5	0-4	75°	75°	0.6/2	12GCY51F1A	3-GCY	L-2	38(17.2)	44(20)

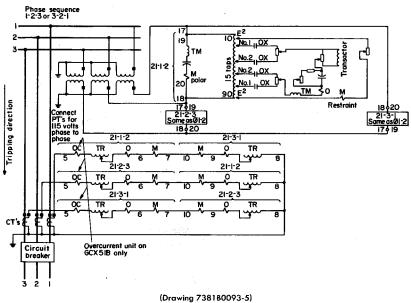


Fig. 6. Typical External Connections
Three Type GCX51A or 51B per Terminal

CEB

Offset MHO-Zone and Phase Packaged Directional-distance Relays

GE Protective Relays

DESCRIPTION

Type **CEB** relays are high-speed, single-zone mho directional distance phase relays with provisions for offsetting the characteristic. The transient overreach characteristic is such that these relays are suitable for 2nd or 3rd zone applications.

APPLICATION

The Type **CEB51A** is a single-phase offset mho blocking relay that includes an outof-step blocking auxiliary (OSB) telephone type relay. This auxiliary has two NO and five NC contacts suitable for out-of-step blocking of either tripping or reclosing.

One relay per terminal is required to provide out-of-step blocking in conjunction with the M2 unit of a Type CEY52 or GCY51 when the OM3 unit is reversed. It is also suitable for two- or three-terminal directional comparison applications that utilize a directional carrier starting relay such as a Type CEB52.

The Type **CEB51B** is a single-phase, single-zone relay. Thus, three relays, plus one Type SAM timing relay are required to provide one zone of time delay distance protection against multi-phase faults.

A typical application would include three CEB51B relays with one Type SAM timer for generator backup protection.

The CEB52A is a three-phase high-speed extended (30 to 1) range, single-zone, mho distance relay with provisions for offsetting the characteristic a fixed amount. It is suitable for applications as a transmission line carrier starting relay in directional comparison relaying schemes. Also, the CEB52A is suitable as a third-zone distance relay in a straight distance protective scheme using zone packaged relays where carrier may be added in the future.

The CEB52A consists of three singlephase offset mho units in one L-2D case and has one target seal-in for all three phases. It may also be used with a Type SAM timing relay to provide second- or third-zone protection in straight distance schemes.

CONTACT RATINGS

The trip circuit of the relay will close and carry momentarily 30 amperes dc. The breaker trip circuit, however, should always be opened by a circuit breaker auxiliary switch or other suitable means, because the relay contacts cannot interrupt tripping current. If the tripping current should exceed 30 amperes it is recommended that an auxiliary tripping relay be used.

BURDEN DATA Table 1

Relay Type	Maxim Curr Burc	ent	Maximum① Potential Burden		
	Pf	Va	Pf	Va	
CEB52A { Polarizing } Restraint CEB51A { Polarizing } Restraint CEB51B { Polarizing } Restraint CEB51B { Polarizing } Restraint	0.98 0.7 — — 0.7 —	3.86 5 5 	0.99 0.57 0.99 0.39 - 0.99 0.39	9.2 8 - 10.3 7.7 - 10.3 7.7	

①Maximum Burden imposed on each CT or Pt. at 5 amp 60 Hz and rated voltage and 100 percent restraint tap. For potential Burden calculation other than 100 percent restraint, see instruction book.

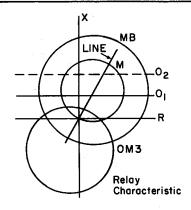
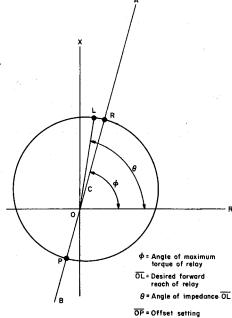



Fig. 1. Typical steady state characteristics for Type GCX51 with starting CEB52A for carrier

(0165A770)
Fig. 2. Typical offset characteristic of Type
CEB51B relay

WEI EKEITGES.	
Dimensions	. Section 16
How to Order	Section 1
Instruction Books	
Target and Contact Data	Section 16
Relay Standards	

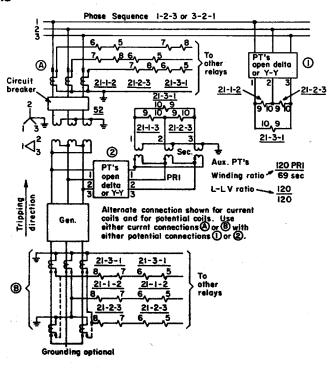
CEB

Offset MHO-Zone and Phase Packaged Directional-distance Relays

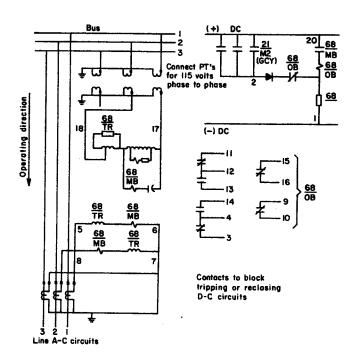
GE Protective Relays

SELECTIC	N GUI	DE											
Application	Ac	Dc Control	Number Of	Target Amp	Target Seal-In	Mho Unit		Max. Torque Angle		Model Number	Case Size	Appro	
	Rating	Volts	Phases	Amp	Amp	Ohms	Range	Factory Setting	Offset Ohms		312 6	Net	Ship
Type CEB52/	4—3 Pha	se Offset	Mho-2n	d or 3rd	Zone Ex	tended Ro	ange		•				
Lines Directional Comparison and Distance	60 Hz 120V 5 Amp	- - - - -	3 3 3 3 3 3	- - - - -	0.6/2 0.2/2 0.6/2 0.2/2 0.6/2 0.6/2 0.6/2	0.5-15 0.5-15 1-30 1-30 1-30 2-60 2-60	60/75	75°	0/0.25 0/0.25 0/0.5 0/0.5 0/0.2 0/0.5 0/1.0	12CEB52A4D 12CEB52A9D 12CEB52A1D 12CEB52A2D 12CEB52A6D 12CEB52A5D 12CEB52A10D	L-2D	44(20)	51(23.1)
	. 50 Hz 120V	_ _	3 3	_ _	0.2/2 0.6/2	1-30 1-30	60/75 60/75	75° 75°	0/0.5 0/0.5	12CEB52A3D 12CEB52A8D			
Type CEB5 18	3—Single	Phase Of	fset Mho	— 2nd c	r 3rd Zor	ie ·							-
Generator	60 Hz 120V 5 Amp	_	1 1	_	0.2/2 0.2/2	3-30 3-30	1 -	60° 75°	0-4 0-4	12CEB51B1A 12CEB51B2A	M-1	05/110)	31(14.1)
and Lines	50 Hz 120V 5 Amp	_	1	_	0.2/2	3-30	_	.75°	0-4	12CEB51B3A	141-1	25(11.5)	31(14.1)
Type CEB5 1	A — Single	Phase Of	ffset Mho	With O	SB Auxili	ary							•
Out-of- Step Blocking	60 Hz 120V 5 Amp	125/250 125/250 24/48 24/48 110/220]]]]	- - - -	- - - -	3-30	- - - -	60° 75° 60° 75° 75°	0-4	12CEB51A1A 12CEB51A3A 12CEB51A7A 12CEB51A6A 12CEB51A9A	M-2	25(11.3)	31(14.1)
(OSB)	50 Hz 120V 5 Amp	125/250 125/250 110/220 110/220	1 1 1 1	_ _ _ _	_ _ _	3-30	- - - -	60° 75° 60° 75°	0-4	12CEB51A2A 12CEB51A4A 12CEB51A8A 12CEB51A5A	141-2		31(14.1)

NOTE: For SAM and other timing relays, see Section 6.



CEB


Offset MHO-Zone and Phase Packaged Directional-distance Relays

GE Protective Relays

CONNECTION DIAGRAMS

(403A118-5)
Fig. 3. Typical external conn. for Type CEB51B for generator back-up protection (3 relays required)

(0208A2405-0)
Fig. 4. Typical external conn. for Type CEB51A relay for out-of-step blocking

CEY and CEYG

Zone Packaged Reactance and MHO Directional-distance Relays

GE Protective Relays

PHASE PROTECTION—DESCRIPTION

The CEY51A and CEY52A are extended range, three-phase, high-speed, single-zone mho directional-distance relays. These relays include three single-phase units with provision for single phase testing. One target and seal-in unit provides indication of operation for all three distance units and the three-phase contacts are brought out to separate terminal studs.

A **CEY53A** is a single phase, extended range, zone-one mho distance relay specifically for shunt reactor protection and includes the normal target seal-in unit.

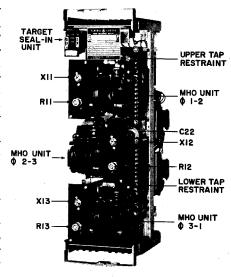
CEY54A is a three-phase, single-zone, phase mho directional distance relay similar to the 2nd zone CEY52A except the target seal-in connections are modified and the phase contacts are connected in parallel.

APPLICATION

The type **CEY51** relay, because of its low transient overreach and its memory action, is primarily a first-zone tripping relay. As such it is applicable as a high-speed tripping unit in direct and permissive under-reaching transferred tripping schemes. It is also very well suited as a first-zone tripping relay in any scheme and will provide complete one-zone protection for three-phase, phase-to-phase and double phase-to-ground faults.

When applying this relay for the protection of a given circuit, it is generally advantageous to select the highest basic reach tap that will provide the desired reach setting. This will insure the highest possible operating torque level. For 1st zone applications, the relay may be set for as much as 90% of the protected line.

The Type CEY52 and CEY54 because of their high speed and memory action char-


acteristics, find application as a carrier tripping relay in directional comparison schemes, as a permissive and tripping relay in permissive overreaching transferred tripping schemes or as a permissive realy in permissive underreaching transferred tripping schemes. They are also very well suited use as a second-zone relay in any scheme. The transient overreach characteristic of these relays have not been limited to the point where it is suitable for use as a first-zone relay. One CEY52 relay in conjunction with a suitable SAM relay will provide one zone of time delay protection for three-phase, phase-to-phase and double-phase-to-ground faults.

For shunt reactor protection the **Type CEY53A** zone one mho distance relay is available. It provides instantaneous protection against turn-to-turn and single-phase-to-ground faults. The relay is mounted in a single ended size M-1 drawout case and three relays are required for each three-phase reactor application. Refer to instruction book for additional information.

GROUND FAULT PROTECTION

The CEYG51A is a three-phase, high-speed, single-zone mho type directional distance ground relay. It includes three single phase units with facilities for single phase testing and one target seal-in unit to indicate operation for all three distance units. Also, the ground mho units are provided with separate current circuits for zero sequence current compensation. The mho units are quadrature voltage polarized and suitable for normal length transmission line protection.

The CEYG53A is a three-phase, highspeed, single-zone mho type directional distance ground relay and the mho units are **median** voltage polarized. Otherwise, similar to the **GEYG51A 2nd** zone relay.

(8036549)
Typical Type CEY51A
Fig. 1. Mho Distance Relay

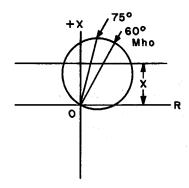


Fig. 2. Typical steady state operating characteristic Type CEY52B

This relay is suitable for longer length transmission lines and is typically applied as the primary ground relay in directional comparison blocking or in permissive overreaching transferred tripping schemes.

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16

CEY and CEYG

Zone Packaged Reactance and MHO Directional-distance Relays

GE Protective Relays

BURDEN DATA Table 1

@Maximum Current Burden 2Maximum Potential Burden Relay Type Va ①CEY51A ①CEY52A 2.5 1.25 0.98 14.3 17.9 0.86 **①CEY54A** 1.25 2.5 2.0 ①CEY52B ①CEY53A 0.86 17.0 14.3 **①CEYG53A** 0.98 4.7 22.1 At 5 Amp 60Hz On 100% Taps at 60 Hz

Table 2—TYPICAL ZONE PACKAGED PHASE DISTANCE RELAYS

	Normal or Long Lines
2 Zone	1—CEY51A-D
3 Zone	1—CEY51A-D 1st zone 1—CEY52A-D 2nd zone 1—CEB52A-D 3rd zone 1—SAM Timer

NOTE:

 (a) Typical Schematic Diagrams for these and other packages are available on request.

(b) For CEB52 details see pages 3-22 through 3-24.

(c) For SAM details see Section 6.

(d) For NAA15G details see page 3-13.

CONTACT RATINGS

The contacts of these relays will close and carry momentarily 30 amperes dc. However, the circuit breaker trip circuit must be opened by an auxiliary switch contact or other suitable means since the relay contacts have no interrupting rating.

NOTES:

①Potential burdens given are the total of polarizing and restraint circuits.

©For current and potential burdens other than 100% tap see instruction book for details.

CEY and CEYG

Zone Packaged Reactance and MHO Directional-distance Relays

GE Protective Relays

SELECTION GUIDE

	•	Target	Mh	o Unit	Max. To	rque Angle	,		Approx W	t Lb(Kg)
Application	AC Rating	Seal-in Amp	Ro	ange hms	Range	Factory Setting	Model Number	Case Size	Net	Ship
1st Zone Line	60Hz 120V 5 Amp	0.6/2 0.6/2 0.6/2 0.6/2 0.6/2 0.2/2 0.2/2	0.7 0.7 1.5 0.2 0.3		60/75° 60/75° 60/75° 60/75° 60/75° 60/75°	60° 60° 75° 60° 60° 60°	12CEY51A3D A1D A6D A9D A11D A8D A2D	L-2D	43(19.5)	50(22.7
.*	50Hz 120V 5Amp	0.6/2 0.2/2		5-30 5-30	60/75° 60/75°	60°	A 10D A4D			
ype CEY52A—	3 Phase, 2n	d or 3rd	Zone Pha	se Mho						
2nd or 3rd Zone Line	60Hz 120V 5 Amp 50Hz 120V	0.6/2 0.6/2 0.2/2 0.2/2 0.6/2	0.5 1-3	i-15 30 i-15 30	60/75° 60/75° 60/75° 60/75°	60° 60° 60°	12CEY52A4D A1D A3D A2D A5D	L-2D	43(19.5)	50(22.7
and the second	5 Amp									
YPE CEY54A-	3 Phase, 2	nd or 3rd	Zone Pho	se Mso-	-(Parallel (ontacts)	1		г	. ,
2nd Zone Line	60Hz 120V 5 Amp	0.6/2	1-3	30	60/75°	60°	12CEY54A1D	L-2D	43(19.5)	50(22.7
ype CEY53A-Si	ngle Phase	— 1st Zo								
Application	AC Ratin		Target Seal-in Amp	Unit I	or Ohm Range nms	Max Torque Angle	Model Number	Case Size	Approx Wt	Lb(Kg) Ship
Shunt Reactor	60H 120\ 5 Am	v [0.2/2 0.2/2	0.7: 1.5-	5-30	75° 75°	12CEY53A1A A2A	M-1 _.	25(11.3)	31(14.1)
YPE CEYG51A	—3 Phase,	2nd or 3	rd Zone G	round N	ho—Quad	rature Polai	rized			
Line Ground Distance 2nd	60H 120\ 5 Am 70\ Resi	y p '	0.6/2 0.6/2 0.2/2	0.5- 1-3- 1-3-	0	60° 60°	12CEYG51A5D A1D A2D	L-2D	43(19.5)	50(22.7)
or 3rd Zone	50H 120 5 Am 70V Rest	v ip	0.6/2	1-3	0	60°	12CEYG51A3D			
YPE CEYG53A	—3 Phase 2	2nd Zone	e Ground I	Mho-M	edian Pola	rized	3			:
		Toroct	AAL	o Unit	Max To	rque Angle		- 1 %.	Approx W	t Lb(Kg)
Application	AC Rating	Target Seal-in Amps) Ro	o Unit ange Ihms	Range	Factory Setting	Model Number	Case Size	Net	Ship
Line Ground Distance	60Hz 120V 5 Amp 70V Rest	0.2/2 0.6/2	1-5 2-6		60/75° 60/75°	60°	12CEYG53A2D A1D	L-2D	43(19.5)	50(22.7

CLPG

Dual Polarized Directional Overcurrent Carrier-ground Relays

GE Protective Relays

DESCRIPTION

The **CLPG12C** is a high-speed, zero sequence ground relay designed specifically for use as a ground fault relay in directional comparison relaying schemes. It includes one high-speed zero sequence directional unit **GD** which may be polarized from voltage and/or current. Also, it contains two high-speed zero sequence non-directional overcurrent units, **G1** and **G2**, and one do operated auxiliary unit, **GD1X**.

APPLICATION

The **CLPG12C** is usually selected for use on grounded neutral systems as the directional comparison ground relay regardless of the type of channel used. This relay, in conjunction with the pilot channel and the CLPG12C relays at the other ends of the protected line section, provides high-speed tripping for all single phase-to-ground faults in the protected line. The relay is suitable for two-terminal and three-terminal lines.

The two non-directional overcurrent units and the operating circuit of the directional unit may be all supplied in series from the neutral connection of the three line current transformers. The polarizing circuit of the directional unit may be supplied from a current transformer in the neutral of a

grounded neutral power transformer or from the broken delta secondary connection of three potential transformers whose primary windings are connected in wye, or it may be simultaneously supplied from both sources of polarization.

CLPG12C—Ratings

The **potential coils** of the CLPG12C relay are rated 120 volts intermittent and 360 volts for 10 seconds, both values being at rated frequency.

The *tripping contacts* of these relays are the normally open contacts of the *G2* and *GD* units. They will carry 2.5 amperes continuously and will close and carry 30 amperes dc for tripping duty at control voltages of 250V dc or less. The breaker trip coil circuit should, however, always be opened by a circuit breaker auxiliary switch or other suitable means. If the tripping current exceeds 30 amperes an auxiliary tripping relay should be used.

CLPG12C—Burdens

The burdens imposed on the current transformers are listed in the instruction book.

The potential circuit burden calculated at 120 volts, 60 Hz is shown in the following table:

Potential Circuit Burdens

Watts	Vars	Volt Amperes
18	3.18	18.35

The burdens imposed by the 50 Hz relays are approximately 90% of those shown for the comparable 60 Hz relays.

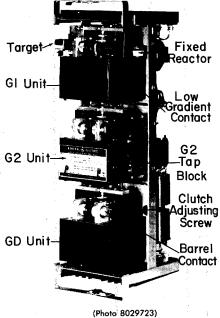
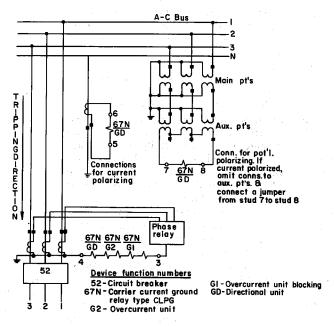


Fig. 1. CLPG12C Relay (Front View)

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16

CLPG


Dual Polarized Directional Overcurrent Carrier-ground Relays

GE Protective Relays

SELECTION GUIDE—Carrier Ground Relay Type CLPG12C 120v. Intermittent—5 Amp Continuous

		Ove	ercurrent	Pick-up	_			_	Approx \	Wt Lb(Kg)													
Frequency Hz	Control Volts DC	G1 Amp	G2 Amp	GD V x I	Target Amp	Seal-in Amp	Model Number	Case Size	Net	Ship													
60	48 125 250	0.4-1.6	0.5-4	3.6-57.6	1	1	12CLPG 12C9A C1A C2A																
	48 125 250	0.8-3.2	1-8	3.6-57.6	1	1	C14A C3A C4A	-						-									
	48 125	0.4-1.6	0.5-4	3.6-57.6	1	0.6/2 0.6/2	C16A C17A																
	125 250	0.4-1.6	0.5-4	3.6-57.6]	0.2/2 0.2/2	C11A C18A	L-2	L-2	L-2	L-2	L-2	L-2	L-2] L-2	37(16.8)	44(20)						
	125 125 125	0.8-3.2	1-8	3.6-57.6	1 2 0.2	0.2/2 2 0.2/2	C19A C15A C22A																
	125 250 125 125	0.4-1.6	0.5-4	3.6-57.6	0.2 0.2 2 0.6	0.2/2 0.2/2 2 0.6	C20A C21A C23A C13A																
	125 250	0.4-1.6	1-8	3.6-57.6	2 2	0.2/2 0.2/2	C24A C25A																
50	125 250 110 220 220	0.4-1.6	0.5-4	3.6-57.6]]]] 0.2] 	C5A C6A C12A C10A C26A	: L- 2	37(16.8)	44(20)													
	125 250	0.8-3.2	1-8	3.6-57.6	1	1	C7A C8A																

CONNECTION DIAGRAM

(Dwg 362A544)

Fig. 2. Typical external connections for CLPG12C

Static Zone Packaged MHO Distance Relays

GE Protective Relays

INTRODUCTION

The SLY81, SLY82, SLY92, SLYG81 and SLYG82 are static distance relays mounted in drawout type cases. They use new measuring techniques to provide an increase in fault resistance accommodation, and an improvement in directional integrity.

DESCRIPTION

The type SLY81A, a phase distance relay, provides protection for all multi-phase faults. Relay models are available with the following ohmic reaches: 0.1-4 ohms and 0.75-30 ohms. Each relay has two electrically separate contacts; each contact has its own target. A third contact, with one side connected to battery positive, is also brought out for use with external auxiliary functions.

The type SLY81B is similar to the type SLY81A except that it includes an out-of-step blocking function, designated MOB. The MOB function is used to detect an out-of-step condition. An output from MOB operates a normally open contact that can be used to energize an auxiliary relay to block tripping, reclosing, etc., during power swings.

The type SLY82, also a phase distance relay, is the companion to the SLY81 relay. The SLY82 is used primarily to provide the blocking functions in pilot relay schemes applied with a blocking channel. Models are available with a 0.75 to 30 ohm range. Contacts are provided for tripping (one normally open with a series target); for carrier starting, or blocking (one normally closed contact); and for auxiliary functions (one normally open with one side connected to battery positive). The mho functions in the SLY82 can be set with an offset equal to 0.1, 0.2, or 0.3 times the forward reach.

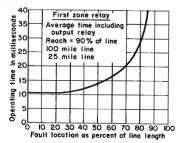
The SLY92A is a phase distance relay that is designed for use where a delta-wye power transformer exists between the relay location and the circuits to be protected by the relay. Typical applications would be backup protection of a generator, or as the carrier start function in a directional comparison blocking scheme. Models are available with an ohmic reach that is adjustable over a range of 0.75 to 30 ohms, and with provisions for offsetting the functions equal to 10, 20 or 30 percent of the set reach. The relay is provided with two separate normally open and one normally closed contact. One of the normally open contacts is provid-

ed with a target and seal-in unit. Also included in the relay is an auxiliary potential transformer to compensate for the phase shift introduced by the delta-wye power transformer.

The SLYG81, a ground distance relay, is the counterpart to the SLY81; it is used to provide protection for all single-line-to-ground faults. The contact arrangement in the SLYG81 is basically the same as that in the SLY81, and the same ohmic ranges are available. There is no provision in the SLYG81 to add the MOB function, as it is not required in a ground relay.

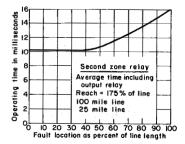
The SLYG82 is the ground distance counterpart to the SLY82 phase distance relay. The SLYG82 relay has the same contact arrangement and the same facilities for offset, as the SLY82. Like the SLY82, the SLYG82 is used primarily to provide the blocking functions (for single-line-to-ground faults) in pilot relaying schemes applied with a blocking channel.

APPLICATION


The SLY81 and SLYG81 relays may be used in "stepped distance" relaying schemes to provide any of the zones required, including the first zone. They also can provide the overreaching or underreaching functions required in pilot relaying schemes.

Where blocking functions are required in the pilot relaying scheme, the SLY82 should be used if an SLY81 is used as the over-reaching function at the remote terminal, and the SLYG82 should be used if an SLYG81 is used as the overreaching function at the remote terminal.

The SLY92 relay finds application where a delta-wye transformer bank exists between the relay and the circuits to be protected. Because of this, it is ideally suited for application in unit generator schemes to provide backup protection for faults on the adjacent system that are not cleared by first line relays (see Figure 7).


The SLY92 relay may also be used as the blocking function in directional comparison blocking schemes (with interposing deltawye power transformer). Further details on the application and specific connections can be found in the instruction book.

Because the SLY92 measures the impedance on the remote side of the delta-wye power transformer, a true measurement will only be made if both the current and the voltage circuits are connected to account for the phase shifts introduced through the transformer. The SLY92 relay has included in it an auxiliary phase shifting potential transformer, and the current circuits are designed and connected to measure the correct currents. Typical ac and dc connections for generator backup protection are shown in Figure 8.

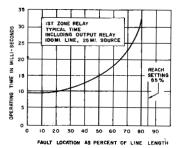
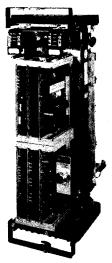

(Dwg. 273A9094)

Fig. 1 Typical operating time for First Zone Phase Relay

(Dwg. 0273A9095-0)

Fig. 2 Typical operating time for Second Zone Phase Relay

(Dwg. 0257A6180-0)


Fig. 3 Typical operating time for First Zone Ground Relay

Dimensions	Section 16
How to Order	Section 1
Instruction Books	
Target and Contact Data	Section 16
Relay Standards	Section 16

Static Zone Packaged MHO Distance Relays

GE Protective Relays

(Photo 8043198)

Fig. 4 Type SLYG81 Static Ground Distance Relay (out of case and NP removed)

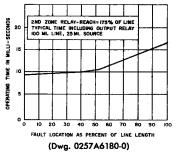


Fig. 5 Typical operating time for Second Zone Ground Relay

FEATURES

The SLY81, SLY82 and SLY92 phase distance relays utilize a polarizing voltage that is proportional to the faulted phase-pair voltage, plus a portion of the respective positive sequence voltage. This polarization method provides the following benefits for phase-to-phase and phase-to-phase-to-ground faults:

- 1. Increased arc resistance coverage on a steady-state basis.
- 2. Ability to produce a continuous output for zero voltage faults.
- 3. Increased security for reverse faults.

The SLYG81 and SLYG82 relays use a four-input phase angle comparer which offers the following advantages for ground distance applications:

- 1. Application is simplified for all lines since detailed calculations are greatly reduced.
- 2. The first and second inputs produce the well-known quadrature polarized unit with a "variable mho" characteristic that increases in size as the source impedance behind the relay is increased, to accommodate increasing fault resistance.

- 3. Input number 3 is an internally derived compensated zero sequence voltage that restricts the distance measurement to the faulted phase and prevents overreaching on heavy load transfer or on double line to ground faults with high fault resistance.
- 4. Input number 4 provides zero sequence overcurrent supervision to prevent operation on loss of potential or line de-energizing transients associated with lines that have shunt reactors.
- 5. The third and fourth inputs also act together as a zero sequence directional unit which provides excellent directional integrity for all faults.

RATINGS

Current:

- (a) 5-amp rms nominal at 60 Hz with continuous capability of 10 amp rms.
- (b) 250 ampere, one second.

Potential:

69 volts - line to neutral; can withstand 110 percent of this value continuously.

Reach Impedance - See Table 1 SLY81A, SLY81B, SLYG81A Short

SLY81A, SLY81B, SLYG81A Shot and Long Reach SLY82A, SLY92A, SLYG82A

SLY82A, SLY92A, SLYG82A Long Reach only

The relay nameplate includes a setable indicator of base reach tap setting.

Table 1 - Positive Sequence Reach

Reach	Zrı Base Reach Tap in ohms	Zr Range in ohms				
Short	0.1 0.2 0.4	0.1 - 1.0 0.2 - 2.0 0.4 - 4.0				
Long	0.75 1.5 3.0	0.75 - 7.5 1.5 - 15 3.0 - 30				

Contacts:

All output contacts will make and carry 30 amperes dc for tripping duty. Continuous current ratings are limited by the target coil ratings. See Section 14.

Table 2 - Contact Interrupting Ratings

Voltage	Amperes					
Ac	①Inductive	Non-Inductive				
115 230	0.75 0.5	2.0 1.0				
Dc						
48 125 250	1.0 0.5 0.25	3.0 1.5 0.75				

① Inductive rating with L/R ratio of 0.1 sec.

Ambient Temperature

These relays have been designed for continuous operation between -20C and +55C per ANSI standard C37.90. In addition, these relays will not malfunction for be damaged if operated in an ambient up to +65C.

Battery Drain:

SLY81A, SLY81B, SLY82A, SLY92A, SLYG81A, or SLYG82A

Rated Volts Dc	Condition K2 - Aux	Current Milliamps
125	Standby	80
125	Picked-up	155
48	Standby	200
48	Picked-up	315

BURDENS: SLY81A, SLY81B, SLY82A, SLY92A

The maximum potential burden per phase at 120 volts, 60 Hz is:

0.4 volt amperes

0.2 watts

0.35 vars

The maximum current circuit burden per phase at 5 amperes, 60 Hz is:

 $Z = 0.028 \angle 30^{\circ} \text{ ohms}$

R = 0.0024 ohms

X = 0.014 ohms

SLYG81A or SLYG82A

The maximum potential burden per phase at 69 volts, 60 Hz is:

0.2 volt amperes

0.17 watts

0.10 vars

The maximum current circuit burden per phase at 5 amperes, 60 Hz is:

 $Z = 0.03 \angle 30^{\circ}$ ohms

R = 0.026 ohms

X = 0.015 ohms

POWER SUPPLY

Single rated, 48 or 125V dc with dc to dc converter to provide isolation between the dc control and solid state circuitry for better security. The power supply has a light emitting diode, visible through the relay name-plate, to indicate it is operational.

RELIABILITY

High circuit reliability is provided in the design of these relays by the use of hermetically-sealed silicon semiconductor components which are applied with very conservative derating factors. These components are subjected to a "burn-in" test to reduce infant mortality prior to assembly and installation.

Static Zone Packaged MHO Distance Relays

GE Protective Relays

SENSITIVITY

The SLY81 is very sensitive. If set at the 3 ohm reach and assuming 15 percent pullback, minimum operating current for a three-phase fault is 0.21 amps and for a phase-to-phase fault is 0.18 amps. Equivalently for the SLYG81 set the same, the minimum ground fault current is 0.21 amps. For this example the assumption is also made that $I_0 = I_1$ and that $Z_0/Z_1 = 3$.

SEISMIC

These relays have been tested per IEEE

Standard C37.98-1978 (formerly IEEE-501). The SLY81, SLY82, SLY92 and SLYG-81 and their normally open contacts have a rating of 5G ZPA. The normally closed contact of the SLY82, SLY92 and the SLYG82 has a rating of 3G ZPA.

SURGE PROTECTION

The relays are designed to meet the surge withstand capability test of ANSI /IEEE C37.90-1978. They also meet the GE "Fast Transient" test and the GE RFI test.

ACCESSORIES

A card puller catalog number 268A9907P1 is available for removing the printed circuit cards from their sockets. It is recommended this tool be used because it will facilitate card removal and help prevent damage to the cards. It should be listed as a separate item on an order. A card extender catalog number 215B8450G1 is available for testing the printed circuit card. It should be listed as a separate item on an order.

SELECTION GUIDE

Application	AC Rating		Amps	DC Control Volt	Target (Amps-Dc)	Reach L-N Ohms	Positive Sequence Angle	Zero Sequence Angle	Model Number	Case Size	Approx. Wt. lb (kg)	
		Freq. (Hz)									Net	Ship
TYPE SLY81 2-N.O. Trip					Mho Tripping				P	HAS	E	
Line Tripping Phase Distance 1st or 2nd Zone	120	60	5	48 125 48 125 125 125 250* 250* 250*	0.6/2.0	0.1-4.0 0.1-4.0 0.75-30.0 0.75-30.0 0.1-4.0 0.75-30.0 0.1-4.0 0.75-30.0 0.1-4.0	85° 85° 85° 65° 65° 65° 65°		12SLY81A1D A2D A3D A4D A15D A16D A17D A18D A21D			
	110	50	1 }	48 110 48 110 48 110 48 110 125 125 125 250*	0.6/2.0	0.1-4.0 0.1-4.0 0.75-30.0 0.75-30.0 0.5-20.0 0.5-20.0 3.75-150.0 0.1-4.0 0.75-30.0 0.1-4.0	85°		A2D A5D A6D A7D A8D A9D A10D A11D A12D A13D A14D A19D A20D	L2D	30 (13.6)	36 (16.3)
TYPE SLY81 2-N.O. Trip						ut-of-Step Blo	cking (MOB))		PHAS	E	
Line Tripping with MOB Phase Distance	120	60	5	48 125 48 125	0.6/2.0	0.1-4.0 0.1-4.0 0.75-30.0 0.75-30.0	85°		12SLY81B1D B2D B3D B4D	L2D	30 (13.6)	36 (16.3)
	110	50	5 }	48 110 48 110 48 110 48 110	0.6/2.0	0.1-4.0 0.1-4.0 0.75-30.0 0.75-30.0 0.5-20.0 0.5-20.0 3.75-150.0 0.1-4.0	85°		B5D B6D B7D B8D B9D B10D B11D B12D	L2D	30 (13.6)	36 (16.3)

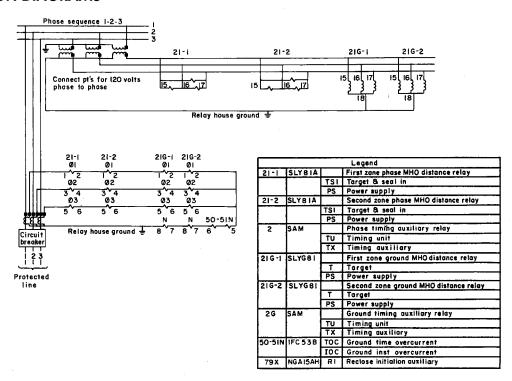
^{*}Includes an externally mounted pre-regulator.

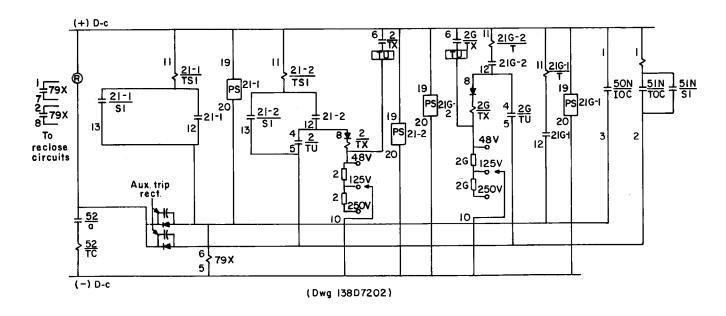
GE Protective Relays

Static Zone Packaged MHO Distance Relays

SELECTION GUIDE

Application	AC	Freq.		DC Control	Target (Amps-Dc)	Reach	Positive Sequence	Zero Sequence	Model Number		Approx. Wt. lb (kg)	
	Rating	(Hz)	Amps	Volt		L-N Ohms	Angle	Angle		Case Size	Net	Ship
					Mho Błocking t and 1-N.O.	Aux. Contact			P	PHAS	E	
Line Blocking	120	60	5	48 125	0.6/2.0	0.75-30.0 0.75-30.0	85°		12SLY82A3D A4D			
Ground Distance 2nd or 3rd Zone	110 110 110 110 120	50	5 5 1 1 5	48 110 48 110 125	0.6/2.0	0.75-30.0 0.75-30.0 3.75-150.0 3.75-150.0 0.75-30.0	85°		A7D A8D A11D A12D A15D	L2D	30 (13.6)	36 (16.3
TYPE SLY92 1-N.O. Trip	A—3 Pha ping Cont	se, Gene act, 1-N	rator Bac .C. Blocki	kup, Carr ng Contac	ier Start, Off t and 1-N.O.	set Phase Mha Aux. Contact			F	PHAS	E	-
Generator Backup, Carrier	120	60	5 {	48 125 250*	0.6/2.0	0.75-30.0	75°		12SLY92A3D A4D A16D	L2D	30 (13.6)	36 (16.3
Start	120	50	5	220*	0.6/2.0	0.75-30.0	75°		A15D			
TYPE SLYG8 2-N.O. Tripp	1A—3 Ph ping Cont	ase, 1st acts and	or 2nd Zo 1-N.O. A	one Groun ux. Conta	nd Mho Trippi act.	ng			GI	ROU	ND.	
Line Tripping Ground Distance 1st or 2nd Zone	69	60	5	48 125 48 125 125 250* 250* 125 250* 250* 48 110 48 110	\	0.1-4.0 0.1-4.0 0.75-30.0 0.75-30.0 0.75-30.0 0.1-4.0 0.75-30.0 0.1-4.0 0.75-30.0 0.1-4.0 0.75-30.0 0.1-4.0 0.75-30.0 0.1-4.0	85° 85° 85° 85° 85° 85° 65° 65°	75° 75° 75° 75° 75° 75° 75° 55° 55° 55°	12SLYG81A1D	L2D	30 (13.6)	36 (16.3
	63 2A—3 Ph	50 use, 2nd	or 3rd Zo	48 110 48 110 125 one Offset	0.6/2.0	0.5-20.0 0.5-20.0 3.75-150.0 3.75-150.0 0.1-4.0 Blocking	85°	75°	A10D A11D A12D A13D A20D	2011		
Line	69	60	C. Blockin	48 125	0.6/2.0	0.75-30.0	85°	75°	12SLYG82A3D	ROUI	ND	
Blocking Ground Distance and or 3rd Zone	63	50	5 5 1 1	48 110 48 110	0.6/2.0	0.75-30.0 0.75-30.0 3.75-150.0 3.75-150.0	85°	75°	A4D A7D A8D A11D A12D	L2D	30 (13.6)	36 (16.3)


^{*}Includes an externally mounted pre-regulator.



Static Zone Packaged MHO Distance Relays

GE Protective Relays

CONNECTION DIAGRAMS

(Dwg. 139D7202)

Fig. 6. Typical External Connection for Two-Zone Phase and Ground Distance Line Protection with Ground Overcurrent Backup.

SLY81, SLY82, SLY92, SLYG81 and SLYG82

Static Zone Packaged MHO Distance Relays

GE Protective Relays

CONNECTION DIAGRAMS

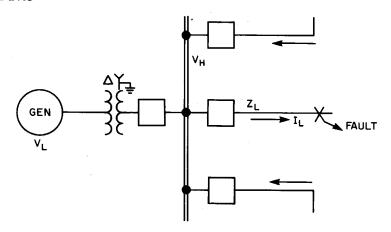


Fig. 7. Typical high voltage bus in generating station.

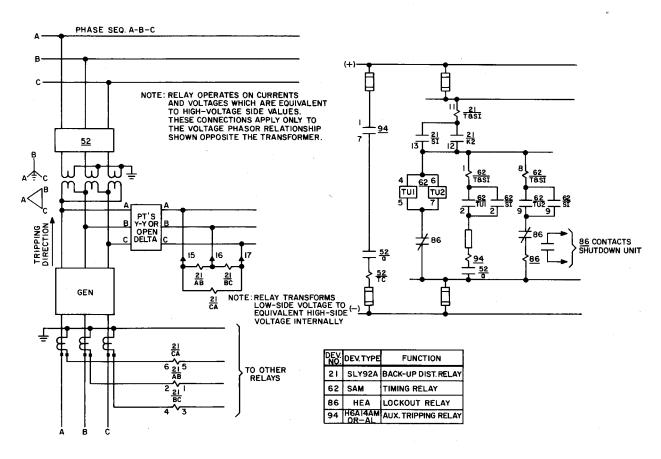


Fig. 8. External connection for SLY92A and SAM relays.

SECTION: 4

Directional Relays

Three Phase Power Directional 1
Sensitive Power Directional 3
Sensitive Over-and Underpower 5
Time-delay Power Directional 7
CJCG Instantaneous Directional Overcurrent
Zero Sequence Overcurrent11
BCG, IBCV Phase- and Ground-directional Overcurrent
BCV and JBCG Phase- and Ground-directional Instantaneous Overcurrent 14

CAP

Three-phase Power Directional Relays

GE Protective Relays

For Power Directional Protection of Lines, Feeders, and Generators

APPLICATION

Power-directional Protection of Single Lines: The Type CAP15A relay, in conjunction with overcurrent relays, can be used to protect single incoming, outgoing, or tie lines. Normally, the Type IAC60 overcurrent relay is used to provide time-current co-ordination with directional control to prevent false tripping on momentary reversal of power immediately following the clearing of a fault. When the CAP15A is used with the recommended 60-degree connection, the maximum torque on a threephase fault is developed when the line current lags its unity power-factor postion by 40 degrees. On a phase-to-phase fault, the relay located at the fault develops maximum torque when the resultant of the currents in the faulted phases lags its unity power-factor position by 70 degrees.

Where the ground fault current in the relay is less than three times the load current, an additional single-phase directional-ground relay is recommended to insure adequate protection against ground faults.

Balanced-power Protection of Two Parallel Lines: The Type CAP15A will provide this protection when connected differentially with overcurrent relays to the current transformer secondaries of both lines. A "through" fault or overload which does not disturb the balance between the lines will not cause the relays to function. When a fault occurs that unbalances the current in the lines, the relays receive the difference between the two currents and the breaker in the faulty line. Other auxiliary relays for co-ordination are also required.

GENERATOR PROTECTION AGAINST MOTORING:

The Type CAP15B relay, in conjunction with a suitable time relay such as the Type IAV, provides sensitive protection against generator motoring. The relay will operate under 0.025 amps at rated voltage and unity power factor. It is suitable for application on unbalanced 3-phase loads.

For compact switchboard use, refer to the Type GGP relay which consists of the Types CAP15B and IAV mounted together in a size M2 drawout case.

B25A

B5A

B6A

B18A

B₄A

B13A

15

(6.8)

S2

(Photo 8008317)

Fig. 1. CAP15 power-directional relay

TARGET AND HOLDING COIL RATINGS

	Amperes, AC or DC			
Function	0.2 Amp	1.0 Amp		
Coil Resistance Tripping Duty Carry Continuously	7.0ΩD.C. 5 Amp 0.5 Amp	0.25ΩD.C. 30 Amp 1.25 Amp①		

① Determined by the control spring rating.

SELECTION GUIDE—Three-phase; 1 N.O. and 1 N.C. Contact

Freq.	VOLTS	Amps	Target Coil Rating	Right & Left Hold. Coils Rating	Angle of Max.	Model Number	Case Size	in it	ox Wt o (kg)
			(Amps DC)	(Amps DC)	Torque			Net	Ship
TRAN	SMISS	ON LI	NE PROTEC	TION					
	115 115 115 115 115 115		1.0 0.2 	1.0 0.2 1.0 0.2 —		12CAP15A1A A2A A9A A10A A13A A17A			
60	130 130 208 208 208 230 230	5	1.0	1.0 0.2 1.0 0.2 1.0 1.0	40°	A14A A15A A11A A12A A24A A7A A8A	S 2	15 (6.8)	22 (9.9)
50	115 115 115 115 115	5	1.0 0.2	1.0 0.2 — 1.0 0.2	40°	A3A A4A A16A A19A A20A			
MOTO	MOTORING OF GENERATOR PROTECTION								
60	115 115 115 115 115 208 208 208	5	1.0 0.2 1.0	1.0 0.2 1.0 0.2 — 0.2 1.0	0°	12CAP15B1A B2A B15A B16A B22A B20A B21A B23A			

0.2 1.0 0.2

1.0

1.0

0.2 1.0 ٥°

1.0

1.0

BURDENS

	Frequency (Hz)	Volt Amps	Watts	Power Factor
Current®	60	0.40	0.20	0.50
	50	0.35	0.20	0.57
Potential@	60	5.30	1.60	0.30
	50	6.20	2.15	0.35

² These burdens are per relay circuit 13-14, 15-16, 17-18 and 19-20).

The current burdens shown are with five amperes flowing. With standard connections, one of the three current transformers supplies two current coils in series so that the burden on that transformer will be twice the amount shown. The other two current transformers will each supply one current coil and will have a burden as shown.

REFERENCES:

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16

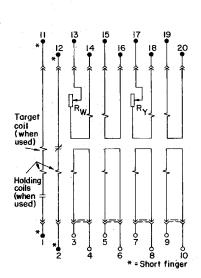
5

230 230

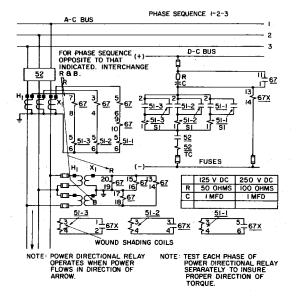
230

115 115

50



CAP


Three-phase Power Directional Relays

GE Protective Relays

INTERNAL CONNECTION DIAGRAMS

(Dwg. No. K-6174667) Fig. 2. CAP15A(-)A relay.

(Dwg. No. 6154168-0)

Fig. 3. Typical external connections of

CAP15A for directional overcurrent protection

Sensitive Power Directional Relays

GE Protective Relays

High-speed Sensitive Three-phase Power Directional Relay for Lines

DESCRIPTION

The CCP is a sensitive, high-speed, power directional relay for three-phase alternating current circuits. The relay is composed of three single-phase induction cylinder units, all mounted on a common shaft. Each of the three units has a 30-degree angle of maximum torque (current leading voltage). When the relay receives line-to-line potentials and phase currents, maximum torque is developed at unity power factor.

The contact assembly consists of two electrically separate contacts, one normally open and one normally closed. There is also a target available which is brought out to separate studs.

APPLICATION

Because of its sensitivity and its real power directional characteristics, the CCP relay finds application where it is required to detect low level reverse power flow. It is generally used in systems where three-phase potentials and currents are available. However, it may also be used if only a single-phase potential is available by connecting the three potential coils in parallel and the three current coils in series. With this arrangement, the paralleled potential circuits should receive potential that lags the current supplied to the series current coils by 30 degrees at unity system power factor.

One of the most common applications of this relay is as a reverse power device to detect ground faults on the delta side of a power transformer bank by actually detecting reverse magnetizing current into the transformer bank. This is illustrated in Figure 1.

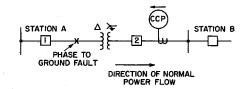


Fig. 1.

If a single-phase-to-ground fault were to occur at the location shown in Figure 1, it would be cleared at Station A by breaker No.1 but not necessarily at Station B by breaker No. 2. However, it is desirable to open breaker No. 2 in order to remove the exciting current taken by the transformer from power sources feeding Station B. This can be accomplished by the CCP13E relay which is generally sensitive enough to operate on the real component of the exciting current (transformer core loss component).

Note that the current transformers at breaker No. 2 must be selected so that their secondary output corresponding to minimum core-loss current exceeds the pickup rating of the relay. On the other hand, the

Fig. 2. Type CCP Relay

secondary output under maximum load conditions should not exceed the continuous rating of the relay.

Since the CCP is a sensitive, high-speed device, it is suggested that it be used in conjunction with a separate time delay relay. This will prevent undesired operation during system disturbances which may momentarily cause the power to be reversed from its normal direction of flow.

SELECTION GUIDE

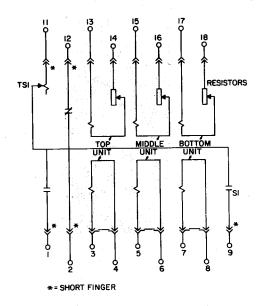
1-N.O. and 1-N.C. Contact (Electrically Separate)

Voltage	Freq.	Current (Amps)	Min. P.U. (Amps)	Max. P.U. (Amps)	Angle Max. Torque Lead	T. & S.I. Rating (Amps)	Model Number	Case Size		ox. Wt. o. (Kg) Ship
115 208 115 208	60 60 50 50	5	.004	.016	30°	0.2/2.0	12CCP13E1A E3A E2A E4A	M-2	20 (9)	30 (13.5)

TABLE I—BURDENS (Per Phase)

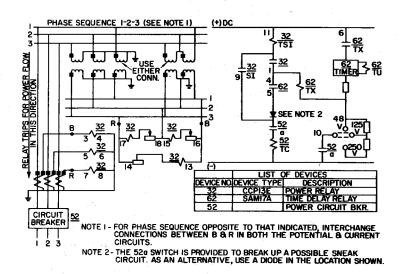
	Voltage	Frequency	R	х	z	Watts	Vars	VA
Current ^①	_	60 50	0.27 0.23	0.62 0.52	0.68 0.57	6.8 5.9	15.6 13.0	17.0 14.3
Potential	115 208 115 208	60 60 50 50	408 1350 413 1370	710 2300 720 2370	815 2640 830 2730	8.1 8.4 8.0 7.9	14.1 14.3 13.9 13.7	16.2 16.4 16.0 15.8

 $\ensuremath{\mathfrak{D}}$ The current burdens shown are with five amperes flowing and pickup set for minimum.


Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16

CCF

Sensitive Power Directional Relays


GE Protective Relays

INTERNAL CONNECTION DIAGRAMS

(0275A4413-3)

Fig. 3. Internal connection diagram for Type CCP13E relay (front view)

(0275A4413-3)
Fig. 4. Typical external connections of CCP13E relay when used with a time delay relay

CFW

High-speed Overpower and Underpower Relays

GE Protective Relays

For the Control of the Flow of Power in Ac Circuits

APPLICATION

Regulating and Limiting Loads

The Type CFW relay is primarily used as a control device for load-limiting or load-regulating applications on alternating-current circuits.

A typical application employs the CFW, with suitable auxiliary relays, to force the field of a motor as its load varies. See Figure 3.

CALIBRATION RANGE

The normally open (left) contacts are set to close at a value within the calibration range as specified for the particular relay model.

Contact Spread

The travel from contact to contact determines the difference between the overpower and underpower settings. This contact spread is adjustable within the specified ranges.

These calibrations and contact spreads are stated in 3-phase watts, on the basis of balanced 3-phase loads; the CFW is a single phase device, but measures true watts under balanced conditions.

BURDENS

The volt-ampere burdens of relay windings are given in the following tables:

CURRENT CIRCUIT

Freq.	Amps	Volt-Amp	PF
60	5	13.0	0.38
50		11.3	0.40

POTENTIAL CIRCUIT

Freq.	Volts	Volt-Amp	PF	Watts
60	115	15.0	.52	7.7
50		9.3	.50	4.7

SELECTION GUIDE—All have 5-Ampere current coils, 1 N.O. and 1 N.C. contact (electrically separate)

Three Phase Watts (continuous rating)			rating)	Model I	Model Number			Approx. Weight lb (kg)	
Freq (Hz)	Volts	Calibration Range	Contact Spread	1.0 Amp Holding Coil	0.2 Amp Holding Coil	Case Size	Net	Ship.	
60	115 460	0.800 0-800 0-1200 0-1600 0-3200	5-40 10-80 5-40 10-80 20-160	12CFW11E23A E29A E37A E27A E31A	12CFW11E24A E34A E28A	Sī	20 (9.1)	30 (13.6)	
50	100 115	0-800 0-800 0-1600	5-40 5-40 10-80	E21A	E35A E22A E33A				

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16

CFW

GE Protective Relays

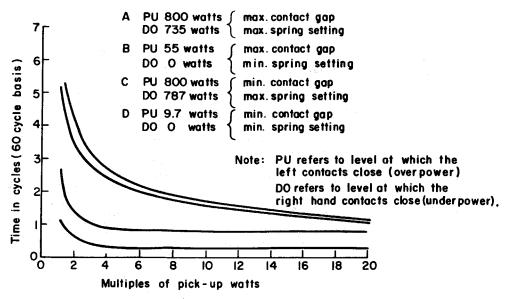


Fig. 2 Time Characteristic Curve For Type CFW11E Relay

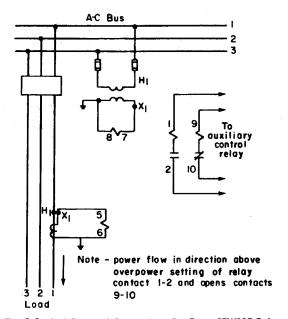


Fig. 3 Typical External Connections For Type CFW11E Relay

98

ICW

Time-delay Power Directional Relays

GE Protective Relays

For Protection Against Excess Power Flow in a Predetermined Direction. For Anti-motoring Protection of Ac Generators

DESCRIPTION

The ICW relays are single phase, time delay, power directional relays in size S1 drawout cases. Several different types are available, providing underpower as well as overpower detection and giving a choice between line-to-neutral or quadrature (line-to-line) polarizing. For applications on 3-phase systems, only one relay is required in most cases because the power flow is usually the same in all three phases.

APPLICATION

The Type ICW relays are designed for power-directional applications. The operation of these relays depends upon both phase angle and magnitude of the applied current and voltage. They will operate when power flow is of sufficient magnitude and in a specific direction.

The ICW51A functions from line current and quadrature line-to-line voltage, and is calibrated in three-phase watts. It exhibits maximum contact-closing torque when the applied current leads the applied voltage by 90 degrees (unity power factor.)

The ICW51B functions from line current and line-to-neutral voltage, and is calibrated in single-phase watts. It exhibits maximum contact-closing torque when the applied current is in phase with the applied voltage. Because of its operating characteristic, the ICW51B is also recommended for single-phase applications.

The ICW52A provides both overpower and underpower detection in the same relay. With the normal factory setting, the right contact closes when the power flowing is less than 80 percent of the value required to close the left contact.

The ICW53A responds to reactive power (vars) and has both an overpower and an underpower setting (90 percent of overpower). This relay can be used to control the switching of power factor correcting capacitor banks.

Small Generating Stations: The Type ICW-51A and Type ICW51B relays are commonly used to protect against excess power flow from the station into a larger system. The relay will trip the tie breaker if power in excess of a predetermined amount is fed into the large system over a given period of time. The relay will not trip the tie breaker if the local station fails and power is fed to its load from the large system.

Generator Protection Against Motoring

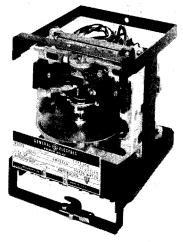
Internal combustion engine-driven Gas turbine-driven Water wheel-driven

The ICW51 is recommended for antimotoring protection for generators rated 200 kw and above and driven by internal combustion engines or gas turbines. This relay may also be used for hydro units if sensitive enough for the particular installation. For internal combustion engine and gas turbine-driven generators, the reverse power losses generally exceed 5 percent of the full-load machine rating.

In general, the most sensitive relay model that has a current coil rating higher than full-load generator current should be used.

Steam Turbine-driven Generators: Low-capacity Units: For units rated from 150 to 1000 kw, the motoring losses generally exceed 2½ percent and may be as high as 5 percent. The standard application for larger units requires a more sensitive relay. However, for these lower rated units the Type ICW is sufficiently sensitive to provide antimotoring protection.

Reverse Power-Overpower: The ICW can be connected to close its contacts on reverse power or on overpower, but not both.


Balanced Load vs Unbalanced Load: When loads are balanced, one single-phase relay can be used as indicated in the Selection Guide. When an unbalanced load is expected, three ICW relays may be used or the Type GGP, three-phase power-directional relay should be considered for complete protection.

Operating Time-ICW51A, 51B or 52B

The number 10 time dial gives approximately 23 seconds at 1.5 times tap setting and 1.0 seconds at 20 times tap setting.

CONTACTS

The main contacts of the relays will carry 2.0 amperes continuously and will close and carry 30 amperes de momentarily for tripping duty at control voltages of 250 volts de or less. The breaker trip coil circuit should, however, always be opened by a circuit breaker auxiliary switch or other suitable means. If the tripping current exceeds 30

(Photo 0042996)

Fig. 1. ICW overpower relay
(without case)

amperes an auxiliary tripping relay should be used.

On relays which include a combination target and seal-in unit (see Selection Guide) the current-carrying rating of the associated main contact circuit is determined by the tap setting of the seal-in coil as shown in Section 14.

When the main contacts are not bypassed by seal-in unit contacts, as in the ICW52A, they may be required to interrupt the circuit. The interrupting ratings of the main contacts for inductive and noninductive loads are shown in Table A.

TABLE A-MAIN CONTACTS

	Indu	ıctive	Noninductive		
Volts	Ac	Dc	Ac	Dc	
	Inte	errupting Ra	ing in Amp	eres	
125	0.6	0.14	1.5	0.30	
250	0.3	0.07	0.75	0.15	

Dimensions	.Section 16
How to Order	
Instruction Books	. Section 17
Target and Contact Data	
Relay Standards	

Time-delay Power Directional Relays

GE Protective Relays

SELECTION GUIDE

Frequency	Volts	Amps	Operating Calibratio	g Watts① on Range	Model	Contacts	Target Seal-in Unit (Amps)	Case Size	Approx Weight Lb (Kg)			
Hertz	70.13		Single Phase	Three Phase	Number				Net	Ship		
OR SINGLE PI	IASE AND	BALANCED	LOAD 3 PHASI	WATT APPLICA	ATIONS (Using Line-t	o-Neutral Volta	ge)					
60	120	5.0	10-40 25-100 50-200 100-400 200-800		12ICW51B1A B2A B3A B4A B7A	One Normaliy Open	0.2/2	S-1	20 (9.1)	25 (11.3		
		2.5	5-20		· B8A	- Opan			(****)	``		
50	120 120 240	5.0	15-60 25-100 25-100		B5A B6A B9A							
OR BALANCE	D LOAD 3	PHASE WAT	T APPLICATION	NS (Using Line-t	o-Line Voltage)							
60	120	3.5 4.0 5.0 5.0 5.0 5.0		15-60 20-80 25-100 50-200 100-400 200-800	12ICW51A1A A10A A2A A3A A4A A5A							
	208	3.5 5.0 5.0 5.0 5.0 5.0		26-104 44-175 50-200 87-350 175-700 350-1400	A12A A13A A11A A14A A15A A16A	One Normally Open	0.2/2	S-1	20 (9.1)	25 (11.3		
	480	5.0		100-400	A21A		1					
50	120	2.0 3.5 5.0 5.0 5.0		10-40 15-60 25-100 50-200 200-800	A19A A6A A7A A9A A8A							
	208	5.0 5.0 5.0		44-175 50-200 200-800	A24A A17A A23A							
OMBINATION	OVER AN	D UNDER P	OWER (Using L	ine-to-Line Volt	age)							
60	120	3.5 5.0 5.0 5.0 5.0		15-60 25-100 50-200 100-400 100-1000	12ICW52A10A A2A A3A A6A A1A	One Normally Open and One	No Target Seal-in	Ş-1	20 (9.1)	25 (11.3		
	208 240	5.0 5.0		200-800 100-400	A5A A4A	Normally Closed	Jearni	oca iii				
50	120	5.0		25-100 50-200 100-1000	A8A A7A A9A							
OR SINGLE P	HASE VARS	AND BALA	NCED 3-PHASI	E (Using Line-to-	Line Voltage)							
60	120 120 208	5.0	15-150 80-400 15-150		12ICW53A1A A2A A5A	1 N.O. and	No Target	S-1	20 (9.1)	25 (11.3		
50	120	5.0	15-150		A4A	1 N.C.	Seal-in					
5—20: 5 10—40: 1 15—60: 1 20—80: 2 25—100: 2 26—104: 2 44—175: 4 50—200: 5 87—350: 8 100—400:	i, 6, 8, 10, 0, 12, 16, 15, 20, 25, 32, 40, 15, 35, 44, 15, 70, 100, 63, 80, 17, 110, 140, 125,	12, 16, 20 20, 25, 32 at 32, 40, 50 at 40, 50, 63, 80 at 55, 70, 87 at 87, 110, 140 100, 125, 16 0, 175, 215, 160, 200, 24	are as follows and 40 watts. and 60 watts. 30 and 100 watts. and 175 watts. 50 and 200 watts. 275 and 350 v 40, 300 and 400.	s. ts. vatts.) watts.		Coil	52 H	7, 8, 7, 67, 5, 1C, 6, 0C, 0C, 0C, 0C, 0C, 0C, 0C, 0C, 0C, 0C	l ₁	2 Signature Si		

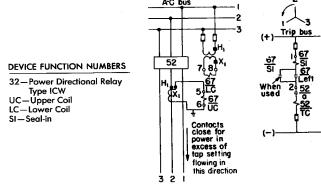


Fig. 2. Typical diagram, ICW51A and ICW52A relays for balanced-load, 3-phase applications using line-to-line voltage

^{100—1000: 100, 123, 100, 200, 240, 300} and 400 watts. 175—700: 175, 215, 275, 350, 415, 520 and 700 watts. 200—800: 200, 240, 300, 400, 480, 600 and 800 watts. 350—1400: 350, 415, 520, 700, 830, 1000 and 1400 watts.

^{15—150: 15, 20, 30, 50, 70, 100} and 150 vars 80—400: 80, 100, 120, 150, 200, 300 and 400 vars

CJC and CJCG

Instantaneous Directional Overcurrent Relays

GE Protective Relays

DESCRIPTION

The CJC is a single phase directional overcurrent relay and the CJCG is a ground directional overcurrent relay both of which are utilized for the protection of feeders and transmission lines. They each consist of an induction-cup instantaneous overcurrent unit (top) and an induction-cup directional unit (bottom).

An M1 or an M2, medium size, drawout case is used to mount each relay. A dual rated target and seal-in unit and one normally open (1 N.O.) contact are provided.

APPLICATION

The CJC and CJCG relays are used for directional multi-phase and phase-to-ground fault protection of feeder and transmission lines. Generally, three single phase CJC relays are used for interphase faults, and a single CJCG relay, residually connected, is used for single phase to ground faults.

The CJCG is a dual polarized relay. It may be polarized by current alone, voltage alone, or by both simultaneously. The simultaneous use of both sets of polarizing coils is advantageous on applications where current and potential polarizing sources are available and there is a possibility that one or the other source may be temporarily lost. The directional unit of the CJC relay must be polarized by potential.

CURRENT CIRCUIT RATINGS

Current	Unit	Continuous	One-second
Range	Connections	Rating	Rating
(Amps)	(Amps)	(Amps)	(Amps)
0.5-4.0	0.5-2.0	1.9	60
	1-4	2.7	120
2-16	2-8	5.0	200
	4-16	6.5	260
10-80	10-40	9.0	220
	20-80	15.0	260

(Photo 8023487)

Fig. 1. Type CJC directional overcurrent

SELECTION GUIDE

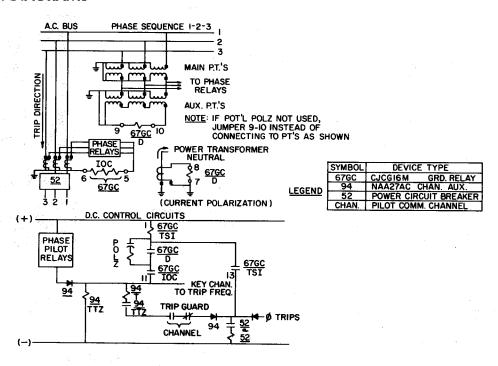
Continuous Rating			Instant. Unit		Case	Approx Wt. in Lbs. (kg)	
Amps	Volts Freq. Rating (Amps)		Rating	Model Number	Size	Net	Ship.
HASE TY	PE CJC	Single Pha	se - 0.2/2.0 A	mp Target and Seal-	in Unit		
1.9 5.0	120	60	0.5-4.0 2-16	12CJC15M1A M2A	M-1	25 (11.3)	35 (15.9)
RANSFER	TRIP API	PLICATION	—0.6/2.0 Amp	Target and Seal-in	Unit		
1.9 5.0 5.0	120	60	0.5-4 2-16 10-80	12CJCG16M1A M2A M3A	M-2	27 (12.2)	40 (18.1)

BURDENS

Current Circuit Burdens at 5 Amp, 60 Hertz

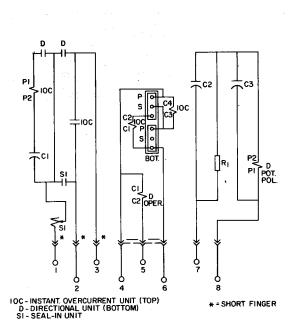
Relay Type	Current Range (Amps)	IOC Unit Connections (Amps)	Imped- ance (Ohms)	Volt- Amperes (I ² Z)	Power Factor
CJC15M	0.5-4.0	0.5-2.0 1-4	10.36 2.59	259.0 64.75	0.39 0.39
	2-16	2-8 4-16	1.07 0.57	26.75 14.27	0.45 0.50
	0.5-4.0	0.5-2.0 1-4	18.54 4.64	464.0 116.0	0.41 0.43
CJCG16M	2-16	2-8 4-16	1.16 0.659	29.0 16.47	0.41 0.437
	10-80	10-40 20-80	0.16 0.040	4.0 1.0	0.496 0.496

Dimensions	.Section 16
How to Order	. Section 1
Instruction Books	. Section 17
Target and Contact Data	
Relay Standards	. Section 16



CJC and CJCG

Instantaneous Directional Overcurrent Relays


GE Protective Relays

CONNECTION DIAGRAMS

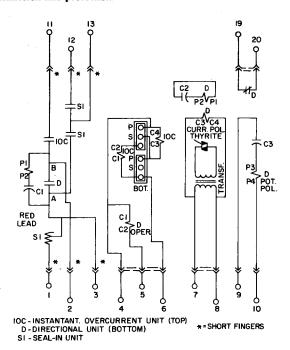

(0257A8393) Type CJCG16M Relay--- Typical external conn

Fig. 2. Type CJCG16M Relay— Typical external connections diagram for permissive overreaching transferred tripping of transmission line protection

(0275A4374)

Fig. 3. Internal connections diagram for the Type CJC15M relay

(0275A4344)
Fig. 4. Internal connections diagram for the Type CJCG16M relay

CFC15

Zero-Sequence Overcurrent Relay

GE Protective Relays

DESCRIPTION

The CFC15A is a two unit induction cup instantaneous overcurrent relay in a Type M2 case similar to the CLPG12C relay except that the directional (bottom) unit is omitted. The CFC15A relay contains a low set (upper) unit (G1) for pilot signal starting, a higher set (lower) unit (G2) with series target for trip circuit supervising and an auxiliary unit (GD1X) for prolonging the pilot signal. The G2 has provisions for either series or parellel connections to permit two ranges of pickup for application on 2 terminal or 3 terminal lines respectively.

APPLICATION

The Type CFC15A relay, together with other relays, provides ground-fault protection for two terminal lines and (and some 3 terminal lines) where it is necessary to use a negative-phase-sequence relay rather than a zero-phase-sequence relay for the directional unit. This will be true where zero sequence mutual reactance is such that proper directional response requires the use of a negative phase sequence relay rather than a zero phase sequence relay.

If this relay is to be used as a component of a pilot relay equipment, refer to the instructions for that equipment for choice of settings for the G1 and G2 units.

RATINGS

CFC15A (G1, G2, and CD1X Auxiliary)

The auxiliary telephone relay unit (CD1X) is available in continuous ratings of 125 or 250 volts dc. The current circuits are rated 3 amperes continuous and 140 amperes for one second. The 140 ampere rating is also the maximum permissible current.

Contact Rating

The contacts of this relay will close and carry momentarily 30 amperes dc for tripping duty at control voltages of 250 volts dc or less. The breaker trip coil circuit should, however, always be opened by a circuit breaker auxiliary switch or other suitable means.

FUNCTIONAL COMPARISON

Standard Zero Sequence Scheme	Function of Relay Units	Negative Sequence Scheme
CLPG-G2 Unit	Carrier Start Carrier Trip Directional Carrier	CFC—G1 Unit CFC—G2 Unit CFC—GD Unit
JBCG—D Unit JBCG—IOC Unit JBCG—TOC Unit	Directional Backup Instantaneous Backup Time Delay Backup	

CONNECTION DIAGRAMS

Dwg. 0165A6009

Fig. 1. Typical External Connections—CFC15A

SELECTION GUIDE

Type CFC—1 N.O. and 1 N.C. Contact Per Unit (G1 and G2)

Rating								Appro	w. Wt
Frequency	Continuous	Control	G1 Range	G2 Range	Target Rating	Model Number	Case Size	in lb	x. Wt. (kg)
Frequency (Hz)	Amps			Rating (Amps)	Model Number	Size	Net	Ship.	
60	5	48 125 125 250	0.4-1.6	0.5-4.0	1.0 1.0 0.2 1.0	12CFC15A6A A2A A5A A3A	M-2	19 (8.6)	24 (10.9)
50		125			1.0	A4A	7	1	1

REFERENCES:

Dimensions	Section 16
How to Order	
Instruction Books	
Target and Contact Data	
Relay Standards	

Directional Relays

IBC, IBCV and IBCG

Phase- and Ground-directional Overcurrent Relays

GE Protective Relays

For Directional Overcurrent Protection of Feeders and Transmission Lines

APPLICATION

The Type IBC directional overcurrent relays are employed primarily for the protection of feeders and transmission lines in applications where single-phase relays are desired or required.

The Types IBC, IBCV, and IBCG relays consist of two units, an instantaneous power-directional unit (bottom) of the induction-cup type, and a time overcurrent unit (top) of the induction-disk type. The directional-unit contacts control the operation of the overcurrent unit (directional control).

Phase Faults—IBC

The Type IBC relays are frequently applied for phase-fault protection of a single line. Typical external connections of current and potential transformers are shown in Fig. 2. With this connection, the current (at unity-power-factor load) leads the polarizing potential by 90 degrees. Since the directional unit has a 45-degree characteristic, its maximum torque will occur when the fault current (balanced 3-phase fault) lags its unity-power-factor position by 45 degrees.

Phase Fault—IBCV

The Type IBCV relays are used for phasefault protection when it is necessary to distinguish between fault conditions and overload or power swings. These relays utilize a directional unit similar to the IBC directional unit except voltage restraint is incorporated into the IBCV directional unit design.

When the generation at a given station varies from time to time, it is possible for the maximum load current to exceed the minimum fault current. When a fault occurs with a minimum generation, the restraint torque in the directional unit collapses rapidly as the voltage drops, thus permitting the relay to trip at the lowest value of fault current. On the other hand, the relay is prevented from tripping on heavy-load currents with maximum generation since system voltage is maintained.

Long or overloaded lines, that are operating near the stabilty limit, are subject to severe power swings. These power swings appear to the relay as traveling faults. However, since the voltage is maintained near normal during a power swing, the IBCV relay is less likely to trip than would a relay without voltage restraint.

Ground Faults--- IBCG

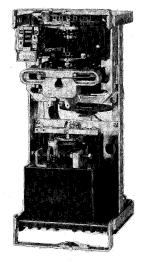
The IBCG relay is designed for protection against ground faults and is consequently of lower operating current range. The relays used for ground-fault protection usually have a low-range operating coil which is rated either 0.5/4 or 1.5/12 amperes. 2/16 rating is also available.

The directional unit of the Type IBCG is dual-polarized and may be polarized by current alone, voltage alone, or by both simultaneously. This dual polarization is desirable on applications where both current and potential polarizing sources are available and there is a possibilty that one or the other source may be temporarily lost.

General

Inverse Time Characteristic preferred where fault current magnitude depends largely upon system generating capacity at time of fault.

Very-inverse and extremely-inverse Time Characteristics are preferred where fault current magnitude is dependent mainly upon location of fault relative to relay and only slightly upon system generation setup.


Target seal-in-units are provided for the time and instantaneous overcurrent units and are rated 0.2/2 amperes.

COIL

The short-time and continuous ratings of the operating coil circuits are shown in Table 1

TABLE 1—Time Overcurrent Unit Taps And Ratings

Tap Range	Character.	1-Sec. Rating	Cont. Rating (Amps)			
(Amps)	Circi delett	(Amps)	Min. Tap	Max. Tap		
0.5-4.0	Inverse V. Inverse Ext. Inv.	70 140 125	1.6 4.0 3.5	5.0 13 10		
1.5-12	V. Inverse Ext. Inv.	260 260	10 9.5	30.5 20		
2-16	Inverse	260	8	20		

(Photo 8036986)

Fig. 1. Type IBCG relay (out of case, without nameplate)

The current and potential polarizing coils of the dual-polarized ground relay are rated as follows:

Potential polarizing coils—120 volts continuous at rated frequency.

Current polarizing coils—continuous rating of 5 ampères with a one (1) second rating of 160 amp.

TABLE 2—Non-Directional Instantaneous Unit Ratings

Range (Amps)	Connection Range (A		Contin. Rating (Amps)	1-Sec. Rating (Amps)
6-150	Low (Series) High (Parallel)	6-30① 30-150①	10.2 19.6	260

① This range is approximate, which means that 6-30 and 30-150 might actually be 6-28 and 28-150. However, there is at least a one-amp overlap between the maximum "Low" setting and the minimum "High" setting.

AVAILABLE SETTINGS

Time Overcurrent Units: 0.5-4.0 — 0.5, 0.6, 0.7, 0.8, 1, 1.2, 1.5, 2, 2.5, 3,

1.5-1.2 — 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 10, 12 2-16 — 2, 2.5, 3, 4, 5, 6, 7, 8, 10, 12, 16

CONTACTS

The current-closing rating of the induction unit contacts is 30 amperes for voltages not exceeding 250 volts. Their current-carrying rating is limited by the tap rating of the seal-in unit.

Dimensions	Section 16
How to Order	
Instruction Books	
Target and Contact Data	
Relay Standards	. Section 16

IBC, IBCV and IBCG

Phase- and Ground-directional Overcurrent Relays

GE Protective Relays

For Directional Overcurrent Protection of Feeders and Transmission Lines

SELECTION GUIDE-0.2/2.0 Amp Target & Seal-in Unit

	Ro	ating (Amps)			Model Num	ber					ox. Wt.
Freq.	Time	Non-Dir.	Dir.							Case	in Lb	s (kg)
(Hz)	Unit	Inst. Unit	P.U.①	Inverse Time	Very Inverse Time	Ext. Inverse Time	Inverse Very Inverse Time		Ext. Inverse Time	Size	Net	Ship
IBC, P	HASE-TYP	E, 120 V	OLT		1 N.O. CONTAC	ī	2	N.O. CONTAC	TS			-
60	1.5-12 2-16			12IBC51M1A	12IBC53M1A	12IBC77M1A	12IBC52M1A	12/BC54M1A	12IBC78M2A		22(10)	35(15.9)
00	1.5-12 2-16	6-150		12IBC51M1Y1A	12IBC53M1Y1A	12IBC77M1Y1A					23(10.4)	36(16.3)
50	1.5-12 2-16	1		12IBC51M2A	12IBC53M2A	12IBC77M2A	12IBC52M2A	12IBC54M2A	12IBC78M3A		22(10)	35(15.9)
55	1.5-12 2-16	6-150		12IBC51M2Y1A	12IBC53M2Y1A	12IBC77M2Y1A					23(10.4)	36(16.3)
IBCG,	GROUND-	TYPE, 12	VOLT		1 N.O. CONTACT 2 N.O. CONTACTS							•
	0.5-4 1.5-12			12IBCG51M1A	12IBCG53M1A 12IBCG53M2A	121BCG77M1A 121BCG77M2A	12IBCG52M1A	12IBCG54M1A 12IBCG54M2A			22(10)	35(15.9)
60	2-16			12IBCG51M2A			12IBCG52M2A			1		
	0.5-4 1.5-12 2-16	6-150		12IBCG51M1Y1A	12IBCG53M1Y1A 12IBCG53M2Y1A					M-1	23(10.4)	36(16.3)
	0.5-4 1.5-12 2-16	···		12IBCG51M3A 12IBCG51M4A	12IBCG53M3A 12IBCG53M4A	12IBCG77M3A 12IBCG77M4A	12IBCG52M3A 12IBCG52M4A	12IBCG54M3A 12IBCG54M4A			22(10)	35(15.9)
	0.5-4 1.5-12 2-16	6-150		12IBCG51M3Y1A 12IBCG51M4Y1A	12IBCG53M3Y1A 12IBCG53M4Y1A						23(10.4)	36(16.3)
IBCV.	PHASE-TY	PE (Dir. U		Volt. Restraint)		N.O. CONTACT	 	N.O. CONTAC				
60	1.5-12 2-16		9	12IBCV51M1A	12IBCV53M1A	12IBCV77M1A	12IBCV52M1A	12IBCV54M1A	12IBCV78M1A		22(10)	35(15.9)
00	1.5-12 2-16	6-150	,	12/BCV51M1Y1A	12IBCV53M1Y1A						23(10.4)	36(16.3)
50	1.5-12 2-16		9	12IBCV51M2A	12IBCV53M2A	12IBCV77M2A	121BCV52M2A	12IBCV54M2A	12IBCV78M2A		22(10)	35(15.9)
-	1.5-12 2-16	6-150	•	12IBCV51M2Y1A	12IBCV53M2Y1A						23(10.4)	36(16.3)

① At rated voltage.

CONNECTION DIAGRAM

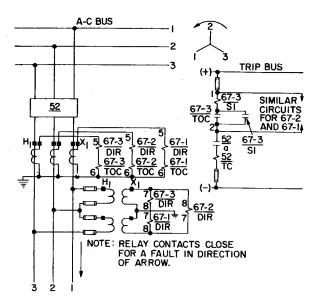


Fig. 2. Typical 90-degree connection of three Type IBC relays used for directional overcurrent protection of a single line.

Phase- and Ground-directional Overcurrent with Directional Instantaneous Relays

GE Protective Relays

For Directional Overcurrent Protection of Feeders and Transmission Lines

APPLICATION

The Types JBC, JBCV, and JBCG relays consist of three units, an instantaneous power-directional unit (bottom) of the induction-cup type, a time overcurrent unit (middle) of the induction-disk type, and an instantaneous-overcurrent unit (top) of the induction-cup type. The directional-unit contacts control the operation of both the instantaneous and the time-overcurrent units (directional control). In this application, the instantaneous unit provides high-speed protection for close-in high-current faults.

Phase Faults—JBC

The Type JBC relays are frequently applied for phase-fault protection of a single line. Typical external connections of current and potential transformers are shown in Figure 2 (see page 2). With this connection, the current (at unity-power-factor load) leads the polarizing potential by 90 degrees. Since the directional unit has a 45 degree characteristic, its maximum torque will occur when the fault current (balanced 3-phase fault) lags its unity-power-factor position by 45 degrees.

Phase Faults—JBCV

The Type JBCV relay is applied for phase-fault protection when it is necessary to distinguish between fault conditions and overload or power swings. The voltage restraint feature of the relay makes this distinction possible. Figure 3 (see page 2) shows the effect of voltage restraint on the impedance characteristic of this relay as compared with that of the Type JBC relay.

When the generation at a given station is apt to vary from time to time, it is possible that the maximum load current may exceed the minimum fault current. When this occurs the Type JBC relay will not distinguish between a heavy load with maximum generation and a fault with minimum generation. This is a typical application for the Type JBCV relay. When a fault occurs with minimum generation, the restraint torque in the directional unit collapses rapidly as the volt-

age drops, thus permitting the relay to trip at the low value of fault current. On the other hand, the relay is prevented from tripping on heavy-load currents with maximum generation as the directional unit will not pick up due to the system voltage being maintained.

Long or heavily loaded lines, that are operating near the stability limit, are subject to severe power swings. These power swings appear to the relay as traveling faults. Since the voltage is maintained near normal during a power swing, the Type JBCV relay is less likely to trip than would a relay without voltage restraint.

Ground Faults—JBCG

The JBCG relay, with both time and instantaneous units directionally controlled, is designed for protection against ground faults and is therefore of lower operating current range. The relays used for such protection usually have a low-range operating coil which is rated either 0.5-4 or 1.5-12 amperes and 2-16 amperes is also available.

The directional unit of the Type JBCG is dual polarized and may be polarized by current alone, voltage alone, or by both simultaneously. This dual polarization is desirable on applications where both current and potential polarizing sources are available and there is a posibility that one or the other source may be temporarily lost.

General

Inverse Time Characteristic are preferred where fault current magnitude depends largely upon system generating capacity at time of fault.

Very-inverse and Extremely-inverse Time Characteristics are preferred where fault current magnitude is dependent mainly upon location of fault relative to relay and only slightly upon system generation setup.

Torget Seal-in-units are provided for the time and instantaneous overcurrent units and are rated 0.2/2.0 amperes, or 0.6/2.0 amperes.

(Photo 8043260)
Fig. 1. Type JBC relay
(out of case)

TABLE 1—Directional Instantaneous Unit Ratings

Cal. Range (Amps)	Setting	Pick-up Range (Amps)	1-Sec. Rating (Amps)	Cont. Current Rating (Amps)
2-16	Series	2-8	160	5
	Parallel	4-16	320	10
10-80	Series	10-40	230	10
	Parallel	20-80	460	20

TABLE 2—Non-Directional Instantaneous Unit Ratings

Range (Amps)	Connection ar (Amps		Contin. Rating (Amps)	1-Sec. Rating (Amps)
6-150	Low (Series) High (Parallel)	6-30① 30-150①	10.2 19.6	260

① This range is approximate, which means that 6-30 and 30-150 might actually be 6-28 and 28-150. However, there is at least a one-amp overlap between the maximum "Low" setting and the minimum "High" setting.

Dimensions	. Section 16
How to Order	. Section 1
Instruction Books	
Target and Contact Data	. Section 16
Relay Standards	.Section 16

Phase- and Ground-directional Overcurrent with Directional Instantaneous Relays

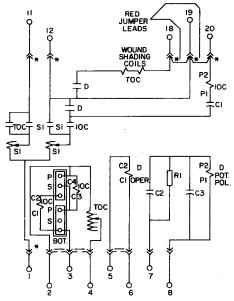
GE Protective Relays

For Directional Overcurrent Protection of Feeders and Transmission Lines

CONTACTS

The current-closing rating of the induction unit contacts is 30 amperes for voltages not exceeding 250 volts. Their current-carrying rating is limited by the tap rating of the seal-in unit.

TABLE 3—Time Overcurrent Unit Taps and Ratings


Tap Range	Characterístics	1-Second Rating	Continuous Rating (Amps)		
(Amps)		(Amps)	Minimum Tap	Maximum Tap	
0.5-4	Inverse (51) V. Inverse (53) Ext. Inv. (77)	70 140 125	1.6 4 3.5	5 13 10	
1.5-12	V. Inverse (53) Ext. Inv. (77)	260 260	10 9.5	30.5 20	
2-16	Inverse (51)	260	8	20	

AVAILABLE SETTINGS

Time Overcurrent Units:

0.5-4 --0.5, 0.6, 0.7, 0.8, 1, 1.2, 1.5, 2, 2.5, 3, 4 1.5-12 --1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 10, 12 2-16 --2, 2.5, 3, 4, 5, 6, 7, 8, 10, 12, 16

CONNECTION DIAGRAMS

IOC - INSTANT, OVERCURRENT UNIT (TOP)

TOC - TIME OVERCURRENT UNIT (MID)
D - DIRECTIONAL UNIT (BOT)

SI - SEAL-IN UNIT

Fig. 3. (0257A6174-0) Internal Connections for JBC51M and JBC53M Relays.

= SHORT FINGER

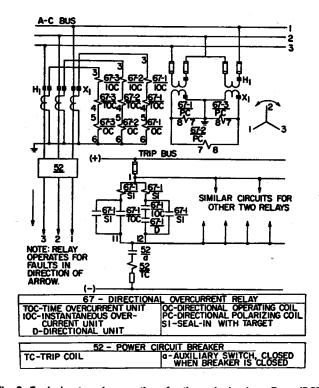


Fig. 2. Typical external connections for three single-phase Type JBC51 relays for directional phase-fault protection of a single line

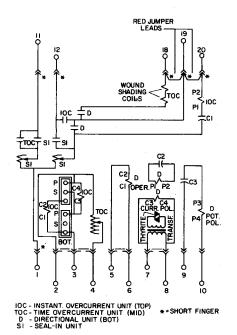


Fig. 4. (0257A6195-0) Internal Connections for JBCG51M and JBCG53M Relays.

Phase- and Ground-directional Overcurrent with Directional Instantaneous Relays

GE Protective Relays

For Directional Overcurrent Protection of Feeders and Transmission Lines

SELECTION GUIDE

Minimum IOC P.U. Greater Than Full Load

Freq	Time O.C. Unit	Dir. Inst. Unit	Non-Dir.	Tripping	-	Model Number		Case	Appr in ib:	ox Wt s (kg)
(Hz)	(Amps)	(Amps)	Unit (Amps)	Init Contacts Very Extremely		Inverse '	Size	Net	Ship.	
BC, P	HASE-TYPE, 1	20 VOLT,	0.2/2.0-AA	AP TARGET A	AND SEAL-IN UNIT					
	1.5-12 2-16	10-80			12JBC51M1A	12JBC53M1A	12JBC77M1A		34 (15.4)	50 (22.7
60	2-16	2-16 10-80	6-150	1 N.O.	12JBC51M2Y1A M1Y1A			L2	35 (15.9)	51 (23.1
50	1.5-12 2-16	10-80	121		12JBC51M2A	12JBC53M2A	12JBC77M2A	-	34 (15.4)	50 (22.7
60	2-16	10-80			12JBC52M1A			-		
	1.5-12 2-16	1000	ļ ···	2 N.O.	12JBC52M2A	12JBC54M1A	12JBC78M1A	L2	34 (15.4)	50 (22.7
50	1.5-12	10-80			12JBC32M2A	12JBC54M2A	12JBC78M2A	1		ļ
BCG.	'	PE, 120 VC		D-AMP TARG	ET AND SEAL-IN UN		123BC/OMZA	1	<u> </u>	L., ,
	1		Ī '		12JBCG51M1A	12JBCG53M1A	12JBCG77M1A	I		
	0.5-4	2-16 10-80 2-16	↓ ··· ∣	'	M2A	M2A M5A	M2A M5A			
	1.5-12	10-80		1 N.O.		MGA	M6A	'	35 (15.9)	51 (23.1
60	2-16	2-16 10-80		:	M5A M6A			L2		
	0.5-4	2-16 10-80			12JBCG51M1Y1A M2Y1A	12JBCG53M1Y1A M2Y1A				
	1.5-12	2-16 10-80	6-150	1 N.O.	•••••	M3Y1A M4Y1A			36 (16.3)	52 (23.6
	2-16	10-80			M3Y1A					
	0.5-4	2-16 10-80			12JBCG51M3A M4A	12JBCG53M3A M4A	12JBCG77M3A M4A		,	
50	1.5-12	2-16 10-80		1 N.O.		M7A M8A	M7A M8A	L2	35 (15.9)	51 (23.1
	2-16	2-16 10-80			M7A M8A					
	0.5-4	2-16 10-80			12JBCG52M1A M2A	12JBCG54M1A M2A	12JBCG78M1A M2A			
60	1.5-12	2-16 10-80	1	2 N.O.		M5A M6A	M5A M6A			
	2-16	2-16 10-80			M5A M6A			L2	25 (25 0)	F1 (00 1
	0.5-4	2-16 10-80			12JBCG52M3A M4A	12JBCG54M3A M4A	12JBCG78M3A M4A		35 (15.9)	51 (23.1
50	1.5-12	2-16 10-80	1 :::	2 N.O.		M7A M8A	M7A M8A	i		
	2-16	2-16 10-80	l ·		M7A M8A					
ICG,	GROUND-TYI		LT, 0.6/2.0	-AMP TARG	ET AND SEAL-IN UN					
	0.5-4	2-16				12JBCG53M9A				
	1.5-12	10-80 2-16	•••			M10A M13A	~		34 (15.4)	50 (22.7
	0.5-4	10-80 2-16	4.150	1.01.0		M14A 12JBCG53M5Y1A				
60		10-80 2-16	6-150	1 N.O.		M6Y1A 12JBCG53M9Y1A		L2		
	1.5-12	10-80	2-50			MIOYIA	•••••		36 (16.3)	52 (23.6
	1.5-12	2-16 10-80	6-150			M7Y1A M8Y1A				
50	0.5-4	2-16 10-80		1 N.O.		12JBCG53M11A M12A		L2	34 (15.4)	50 (22.7
- 1	1.5-12	2-16 10-80				M15A M16A		-	34 (13.4)	30 (22.7)

Phase- and Ground-directional Overcurrent with Directional Instantaneous Relays

GE Protective Relays

For Directional Overcurrent Protection of Feeders and Transmission Lines

SELECTION GUIDE (Cont'd)

Phase-type Voltage Restrained

Freq.	Time O.C. Unit	Dir. Inst. Unit	Non-Dir. Inst.	Dir. P.U. (Amps)	Tripping	Model Number		Model Number	Case	Appr in lb	ox Wt s (kg)		
(Hz)	(Amps)	(Amps)	Unit (Amps)	at Rated Volts	Contacts	Inverse Time	Very Inverse Time	Extremely Inverse Time	Size	Net	Ship.		
JBCV,	PHASE-TYPE	(Dir. Unit	with Volte	age Restrai	nt), 120	Volt, 0.2/2.0 Tar	get and Seal-in Unit						
60	1.5-12 1.5-12 2-16 2-16	2-16 10-80 2-16 10-80		9	1 N.O.	12JBCV51M1A M3A	12JBCV53M1A M2A 	12JBCV77M1A M2A		35 (15.9)	51 (23.1)		
50	2-16 2-16	2-16 10-80]				12JBCV51M2A M4A			_		
60	1.5-12	2-16	6-150]			12JBCV53M1Y1A	L-2	36 (16.3)	52 (23.6)			
60	1.5-12 1.5-12 2-16 2-16	2-16 10-80 2-16 10-80		9	2 N.O.	12JBCV52M1A M3A	12JBCV54M1A M2A	12JBCV78M1A M2A		35 (15.9)	51 (23.1)		
50	2-16 2-16	2-16 10-80	:::			12JBCV52M2A M4A				(,	(20.1.)		

Minimum IOC P.U. Less than Full Load

Time O.C. Unit	Dir. Inst. Unit	Freq.	Dc Aux.	Tripping	Model Number		Case	Approx Wt in lbs (kg)		
(Amps)	(Amps)	(Hz)	(Volts)	Contacts	Inverse Time	Very Inverse Time	Extremely Inverse Time	Size	Net	Ship.
JBC, PHASE-TY	PE, 120 VOL	T, 0.2/2.	D-AMP TARGI	ET AND S	EAL-IN UNIT	,				
1.5-12 2-16	2-16	60			12JBÇ51P1A	12JBC53P1A	12JBC77P1A			
1.5-12 2-16	2-16	50	125 N	N.O.	12JBC51P2A	12JBC53P2A	12JBC77P2A	ا		50 (00 7)
2-16	2-16	60	125	2	12JBC52P1A			L2	34 (15.4)	50 (22.7)
2-16	2-16	50		N.O.	12JBC52P2A		•••••			

TYPE JBCG61 AND JBCG63

Application

These ground directional overcurrent relays are primarily for use in the transferred tripping schemes for highspeed protection of transmission lines. The basic schemes are:

1. Direct underreaching

- 2. Permissive underreaching
- 3. Permissive overreaching

The JBCG61 and the JBCG63 relays are similar respectively to the JBCG51 and the JBCG53 relays. However, the JBCG61 and the JBCG63 relays differ in the arrange-

ment of the seal-in unit contacts and in the location of the directional unit contacts. Both contacts of the seal-in unit are connected to separate relay terminals, and the directional unit is arranged so that it can be used independently.

SELECTION GUIDE

120-VOLT, 60-HERTZ (Continuous)—0.6/2.0-AMP TARGET AND SEAL-IN UNIT

Time O.C. Unit	Dir Inst.	Tripping	Model	Case Size	Approx Wt in lbs (kg)		
(Amps)	Unit (Amps)	Contacts	Inverse Time	Very Inverse Time	Cuse Size	Net	Ship.
0.5-4.0 0.5-4.0 1.5-12.0 1.5-12.0 2-16 2-16	2-16 10-80 2-16 10-80 2-16 10-8	1 N.O.	12JBCG61M1A M2A M3A M4A	12JBCG63M1A M2A M3A M4A	L-2	35 (15.9)	52 (23.4)

SECTION: 5

Differential and Timing Relays

BDD	Transformer Percentage-differential 1
CFD	High Speed Differential 3
IFD &	IFD Percentage Differential 5
PVD I	Bus Differential voltage 8
SBD	Static Bus Differential
STD	Percentage-differential
SAM	Timing

Percentage-differential Relays with Harmonic Restraint

GE Protective Relays

For High-speed Phase and Ground Protection of Two- and Three-winding **Power Transformers and Autotransformers**

DESCRIPTION

The Type BDD relays are for the protection of transformers rated 2000 kva and above and for transformers with windings rated 15 kv or above. However, the importance of the transformer to the system, not its size alone, should be the basis for the decision on this quality of protection.

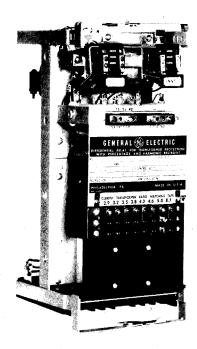
APPLICATION

The Type BDD differential relays should be used for all applications where highspeed operation and system stability are important. These relays have a percentage slope operating characteristic which prevents operation unless the differential current is greater than a certain percentage of the through current. A tap plug on the front of the relay provides slope percentages of 15, 25, or 40 which is usually adequate even for in-phase tap changing under load. Current transformer errors should not exceed 20 percent at 8 times tap value.

AVAILABILITY

Six different forms of the Type BDD relay are available. Each relay is a singlephase unit with one differential circuit. Three relays are required for three-phase protection. The six different forms are provided with two, three, four, five, six or seven through-current restraint circuits for the protection of power transformers with two or more windings or circuits. See Selection Guide, page 6-2.

The Types BDD16B, -17B, -18B, -19B and -20B with three, four, five, six and seven through-current restraint circuits, respectively, also have provision for accommodating one additional circuit connection to the transformer without a through-current restraint in the relay. This application can safely be made only when the additional circuit has no in-feed or is at best a very weak source and needs no through-current restraint.


FEATURES

Harmonic-current Restraint prevents incorrect tripping on magnetizing inrush currents and no auxiliary desensitizing equipment is required.

No Auxiliary Current Transformers are needed for normal applications since the relay is provided with tapped internally mounted auxiliary transformer. The low burden of this relay minimizes current transformer error. Current transformer ratios should be selected carefully to obtain best protection. Refer to instructions.

Minimum Pickup is proportional to the current tap in use and at zero restraint is approximately 30 per cent of tap value.

Targets-The hinged armature instantaneous unit has a self-contained target indicator -"INST." The main operating unit auxiliary includes an indicating target thus giving each phase relay two targets.

(Photo 8036915)

Fig. 1. Type BDD15B, single-pole, percentagedifferential relay in cradle without case

CONTACTS

Type BDD15B relay is provided with two sets of open contacts and the Types BDD16B, -17B, -18B, -19B and -20B are provided with one set of open contacts. The current-closing rating of the contacts is 30 amperes for voltages not exceeding 250 volts. If more than one circuit breaker per set of contacts is to be tripped, or if the tripping current exceeds 30 amperes, an auxiliary relay must be used with the Type BDD relay. After tripping occurs, it is necessary that the tripping circuit of these relays be opened by an auxiliary switch on the circuit breaker or by other automatic means. A hand-reset relay is recommended and normally used.

BURDENS

NOTE: Burdens and minimum pickup values are substantially independent of the percent slope settings and are approximately 100 percent power factor. Figures given are burdens imposed on each current transformer at 5.0 amperes.

				-		
	Тар	Zero Restraint	Operating 60 Hertz		Restrain 60 Hertz	
Relay	Setting Amps	Pickup® Amps	Burden VA	Imped Ohms	Burden VA	Imped Ohms
12BDD15B 16B 17B 18B 19B 20B	2.9 3.2 3.5 3.8 4.2 4.6 5.0	0.87 0.96 1.05 1.14 1.26 1.38 1.50	3.2 2.7 2.4 2.0 1.9 1.6 1.5	0.128 0.108 0.096 0.080 0.076 0.064 0.060 0.028	1.3 1.2 1.1 1.0 0.9 0.8 0.7	0.052 0.048 0.044 0.040 0.036 0.032 0.028

① Burden of operating coil is zero under normal conditions. ② Burden of 50 Hertz relay is the same or slightly lower.

③ It should be recognized that pickup current flows not only through the differential current transformer but also through one of the primary windings of the through current transformer producing some restraint. However, compared to the operating energy, this quantity of restraint is so small that it may be assumed to be zero.

Dimensions	
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16

BDD

Percentage-differential Relays with Harmonic Restraint

GE Protective Relays

SELECTION GUIDE—Single-phase (3 Relays Required for 3-phase Protection)
RATINGS—Single-phase 5 Amperes 1.5 amp minimum pick-up[®] 15/25/40 percent slope.

Rat	Ratings Amperes Frequency, Hertz of		Dc Control Volts				Approximate Weight in Lb (kg)	
Amperes			125/250	48/125	24/48	Case Size	Net	Shipping
		Contacts		Model Number				
OR TRANSFO	RMER PROTEC	CTION REQUIR	ING 2 RESTRAINTS					
	60		12BDD15B11A	12BDD15B16A	12BDD15B13A			
5	50	2 N.O.	12BDD15B12A	12BDD15B17A	12BDD15B14A	M1	22 (10)	34 (15.4)
OR TRANSFO	DRMER PROTEC	TION REQUIR	ING 3 RESTRAINTS					
	60		12BDD16B11A	12BDD16B16A	12BDD16B13A		24 (10.9)	1
- 5	50	1 N.O.	12BDD16B12A	12BDD16B18A	12BDD16B14A	M1		36 (16.3
OR TRANSFO	DRMER PROTEC	CTION REQUIR	ING 4 RESTRAINTS					
	60		12BDD17B1A	12BDD17B3A			26 (11.8)	39 (17.7)
5	50	1 N.O.	12BDD17B2A			L2		
OR TRANSFO	ORMER PROTEC	TION REQUIR	ING 5 RESTRAINTS					
-	60		12BDD18B3A	12BDD18B5A		. 2		
5 / 25	50	1 N.O.	12BDD18B1A	12BDD18B6A		L2	28 (12.7)	42 (19)
OR TRANSFO	ORMER PROTEC	TION REQUIR	ING 6 RESTRAINTS				٠.	
5	60	1 N.O.	128DD1981A	128DD19B2A		L2	28 (12.7)	42 (19)
OR TRANSFO	ORMER PROTEC	TION REQUIR	ING 7 RESTRAINTS					
5	60	1 N.O.	12BDD20B1A	T		L2	28 (12.7)	42 (19)

① Minimum pickup is 1.5 amperes with tap plugs in the 5-ampere and the 25-per-cent slope positions.

CONNECTION DIAGRAM

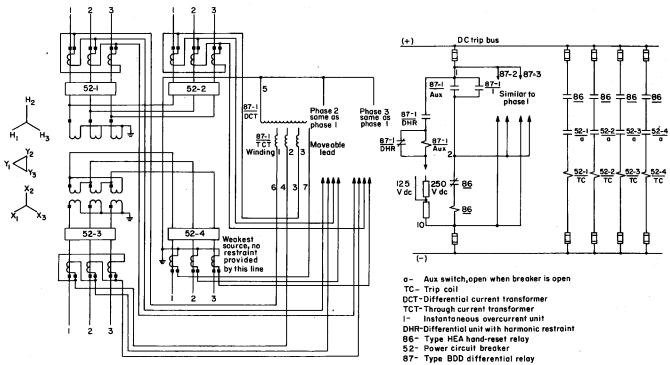


Fig. 2. Typical elementary diagram for Model No. 12BDD16B11 relays for four-circuit transformer protection with three restraints (0264B0499-1)

CFD

High Speed Differential Relays

GE Protective Relays

For Differential Protection of Ac Generators, Frequency Converters, Synchronous Condensers, and Motors

APPLICATION

Type CFD22B high-speed, product-restraint relays are designed to provide percentage-differential relaying protection for the larger and more important machines. They are recommended for generators rated 2000 kva and above and for motors and synchronous condensers rated 3000 hp (or kva) and above.

APPLICATION FACTORS

Where the total R.M.S. symmetrical current that would flow in a differential relay coil is excessive, high voltage may result with sensitive differential relays, and a Thyrite limiter may be required across each phase of the current transformer secondaries. Where taps on the current transformer secondary windings are unused or do not exist, currents below 84 amps are safe without limiters. Where taps are used on the CT secondaries, limiters are not necessary if the current is less than 84× (Active Turns)².

Installations not shown to be safe by the approximate rule given above should be referred to the General Office with data on the fault currents, CT ratios, and CT excitation characteristics, to determine whether limiters are actually needed.

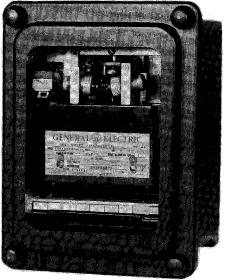
The field switch should be tripped automatically at the same time the machine is disconnected from the system. If the neutral of a machine is grounded directly, or through a low impedance, it is advisable to provide a neutral breaker which can be tripped to open the ground-return circuit of the fault current as quickly as possible.

Current transformers must be accurate within 2 per cent to twice normal current. Above twice normal current accuracy is not so important.

Type CFD Relays WILL NOT Function for:

- (1) Turn-to-turn faults in the machine windings.
- (2) Open circuits in the machine windings.
- (3) High currents caused by external overloads or short-circuits.
- (4) Line power surges.
- (5) Ground between windings and machine frame, if system is ungrounded, unless a second ground occurs in another phase of the system.

Type CFD Relays WILL Function for:


- (1) Internal machine faults, except turnto-turn.
- (2) Faults in primary cables within the protected differential zone.
- (3) Ground short-circuits in any part of the machine winding, except a portion very close to the neutral, provided there is no neutral impedance to limit ground current to a value below the relay pickup calibration.

Product-restraint Principle

The CFD relays function on the product-restraint principle, which gives very little, or zero, restraining torque on single-end-feed internal faults, and an operating torque from the restraint coils on internal faults, with an external source of power.

If a current flows from the neutral side into the generator and another current flows from the generator to the bus, then the restraining coils produce a restraining torque that is proportional to the product of these two currents and the cosine of the angle between them. These are the conditions that will exist during normal operation, during external faults, and during internal faults when the generator continues to supply some current to the bus.

Conversely, if a current flows from the neutral side into the generator and another current flows from the bus into the generator, then the restraining coils produce an operating torque that is proportional to the product of these two

(Photo 8007103)

Fig. 1. CFD single-phase differential relay

currents and the cosine of the angle between them. These are the conditions that will exist during an internal fault when part of the fault current comes from the bus.

Percentage Slope: The relay has a slope which increases very rapidly above approximately twice normal current. This feature eliminates the necessity for close "matching" of the current transformers.

Under normal conditions the two secondary currents should be equal but they may differ due to current transformer errors. The "difference" or "error" current will flow in the operating coil. For currents up to full load of the machine the error current will be less than the 10 per cent "difference" current required to operate the relay. With an external fault the current in the current transformers can be high and the "error" current may be well over 10 per cent. For this reason, the slope of the relay characteristic is made to increase as the current increases.

Dimensions	Section 16
How to Order	Section 1
Instruction Books	
Target and Contact Data	
Relay Standards	

CFD

High Speed Differential Relays

GE Protective Relays

SELECTION GUIDE

SINGLE-PHASE (3 required)

Ratings		Contacts Target		,	Approx Wt in Lb			
Cont Rating in Amp	Freq in Hertz	Min P.U. Amp	Normally Open Per Unit	and Holding Coil Amperes	Model No.	Case Size	Net	Ship.
5 5 5 5	60 60 50 50	0.2 0.2 0.2 0.2 0.2	2 2 2 2	1 0.2 1 0.2	12CFD22B1A B2A B3A B4A	} sı	12	18
IREE-PHASE		2						
5 5 5 5	60 60 50 50	0.2 0.2 0.2 0.2	2 2 2 2	1 0.2 1 0.2	12CFD22A1A 12CFD22A2A 12CFD22A3A 12CFD22A4A	} 12	35	45
DLTAGE LIMIT	ER FOR LINE	URRENT TRAN	SFORMER SECO	NDARY—SINGLE-PHA	ASE	<u> </u>		•
	57				6118766G3		1	2

① For voltage limiter dimensions see Section 14.

DIMENSIONS

See Section 14.

CONNECTION DIAGRAM

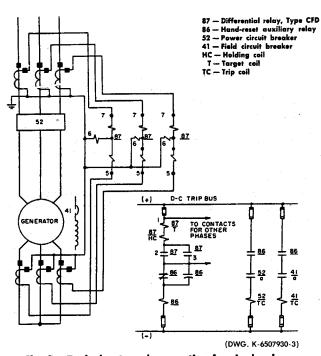


Fig. 2. Typical external connection for single-phase CFD22B relays for protection of a wye-connected generator with six leads brought out

BURDENS

The burdens of the coils in one phase (one induction unit) at 60 Hertz are given below:

	Continuous	Burden on	one CT
Circuit	rating—Amp	Power Factor	Volt Amps
Restraining	5	.57	0.9
Operating 2	0.5	.81	14.4

② Calculated unsaturated values (VA at 0.5 amp).

The operating circuit burden as a function of differential current is given in the table below. The burden is imposed on one current transformer.

Current- Amperes	Multiple of Min Pickup current	Burden on One CT Impedance—Ohms
0.2	1	58
0.6	3	29
2.0	10	11
4.0	20	6.3
5.0	25	5.4

IJD and IFD

Percentage-differential Relays

GE Protective Relays

For the Protection of Ac Rotating Machinery, Power Transformers, and Multi-circuit Buses

APPLICATION

The Types IJD and IFD relays are induction disk units that should be applied as follows:

For Ac Rotating Machines the Type IJD52A is recommended for ratings as indicated in Table 1, page 6-6.

Differential protection is also recommended for smaller machines, under the following conditions:

- (1) Machines which operate in parallel on the same bus with differentially protected machines.
- (2) Machines, regardless of size, which

are important to the operation of the system. The decision governing this application is based on the actual importance of the machine, and the degree of relaying required for the particular application.

For generators rated 2000 kva and above or motors and synchronous condensers rated 3000 hp (or kva) and above, high-speed product-restraint relays, Type CFD are recommended.

NOTE: In order to provide complete percentagedifferential protection, it is necessary that both ends of each machine winding be brought out to the terminal board. This construction should be specified when purchasing the machine, since those of lower voltages or lower hp or kva ratings may not ordinarily have this feature.

The IJD52A relays protect against phase-to-phase and phase-to-ground faults within the machine and leads within the differential zone, provided the fault current is above the relay minimum pickup value. They will not protect against open circuits or turn-to-turn faults. If the neutral of the system is not grounded, protection against grounds in the machine winding is provided only upon the occurrence of a second fault in another phase of the system.

SELECTION GUIDE—Single-phase 0.2/2-amp Target Seal-in

									
Frequency (Hz)	Continuous Rating,	Tap Range,	Minimum Operation Current,	Slope Characteristic	Control		Case		Wt₁Lb(Kg)
	(Amps)	(Amps)	(Amps)	(Percent)	Contacts	Model No.	Size	Net	Ship
	FOR PROTECTION	OF AC ROTATI	NG MACHINE	S (3 required)					•
60 60	5		0.1 0.5	10 25	2-N.O.	12UD52A11A A12A			
50 50 50			0.1 0.5 0.5	10 10 25	2-N.O.	► A14A A17A A19A	S1	12(5.4)	15(6.8)
TYPE IJD528—	FOR PROTECTION	OF AC ROTATII	NG MACHINES	(1 required)					
60 60 60 60 60	5		0.1 1.0 4.0 0.5 1.0 2.0	10 10 50 25 50 50	2-N.O. (with one side common)	12IJD52B11A B14A B15A B16A B17A B18A			
50 50			0.1 4.0	10 50		B12A B19A	L-2	28(12.6)	39(17.6)
TYPE IJD53C—I	FOR PROTECTION	OF 2-WINDING	POWER TRA	NSFORMERS	(3 required)				1
60 60	Twice Tap	3.2-8.7	1.28-3.48	25 50	2-N.O.	12IJD53C11A C14A	S1	10/5 4)	15// 0)
50 50 50	Setting	3.2-8.7 0.64-1.74	1.28-3.48 { 0.2670	25 50 25	2-14.0.	C12A C15A C19A	31	12(5.4)	15(6.8)
TYPE IJD53D —	FOR PROTECTION	OF 2-WINDING	POWER TRA	NSFORMERS	(1 required)	:	-,l-		
60 60	Twice			25 50	2-N.O.	12IJD53D11A D14A			
50 50	•Tap Setting	3.2-8.7	1.28-3.48	25 50	(with one side common)	D12A D15A	L-2	28(12.6)	39(17.6)
	FOR PROTECTION	OF WYF-WIND	ING OF POW		PAAEDS (1 roqui				ļ
60			0 011	LIC TRAINING	oneko (Trego	12IFD51D1A	 	1	
50	5	0.5-2.0a Inst.①	0.5	12.5-25.0	1-N.O.	D2A	M-2	22(10)	32(14.5)
	FOR PROTECTION	OF MULTI-CIRC	UIT BUSES (6	required)					
60 60	5	4-16A Inst.① 2-8A Inst.①	0.4-1.4		1-N.O.	12IFD52B1A B4A		00(10.4)	05(15.5)
50		2-8A Inst.①				B5A	M2	23(10.4)	35(15.9)
	ER FOR LINE CURI	RENT TRANSFO	RMER SECON	DARY-SING	LE-PHASE				
50/60						M-6118766G3		1(.5)	2(.9)

① Range of instantaneous fault detection unit.

Dimensions	. Section 16
How to Order	. Section 1
Instruction Books	.Section 17
Target and Contact Data	.Section 16
Relay Standards	. Section 16

② The Type IFD52B relays do not have taps for balancing secondary currents; external current-balancing auxiliary autotransformers are shipped automatically and included in the price of the relay.

IJD and **IFD**

Percentage-differential Relays

GE Protective Relays

TABLE 1 APPLICATION

Ratings of ac rotating machines for which percentage-differential protection using Type IJD52A relays is recommended

Voltage Range	Generators Kva	Synchronous Condensers and Motors Kva or Hp
5000 and up	0 to 1999	501 to 2999
2200 to 4999	501 to 1999	1500 to 2999
0 to 2199	1000 to 1999	Not Applicable

APPLICATION (cont'd)

Rotating machine current transformers should be selected so that the "difference" current will not exceed 5 per cent of the current that may be encountered during normal or abnormal operation of the machine. This includes all currents up to the maximum fault current which can be delivered by the machine in case of an external fault. This calculation must be based on the actual current-transformer secondary burden including the leads.

In general, it is recommended that current transformers for IJD differential protection be used for no other purpose.

For power transformers, it is recommended that percentagedifferential protection be provided for transformers rated 1000 kva and above if circuit breakers are provided for each winding into which power can flow when an internal fault occurs, and for all transformers rated 5000 kva and above even if it requires the purchase of the necessary circuit breakers.

Differential protection is also recommended for transformers rated below 1000 kva that operate in parallel with differentially protected transformers and have circuit breakers for all parallel-connected windings. If a fault occurring in a small parallel-connected transformer is not promptly removed, it may prove just as damaging to service as a similar fault in a large bank.

The IJD53C relay is used for protection of **two-winding power transformers**. This relay has tapped operating and restraining coils, making it possible to balance secondary currents from the two sets of current transformers.

Percentage-differential relays are recommended for transformers rated 1000 up to 1999 kva, below 15,000 volts.

For transformers rated 2000 kva and above, any voltage, highspeed differential relays are recommended (see Type BDD, STD).

Above recommendations also apply to power autotransformers having equivalent physical capacities.

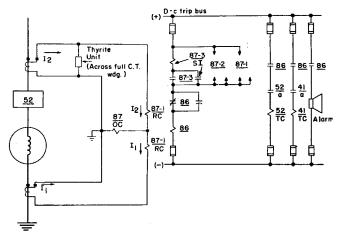


Fig. 2. Typical machine connections

For bus differential protection the IFD52B relay is used for protection of multi-circuit buses. This relay has six restraining coils and can be used with a maximum of six source connections to the bus. Since two restraining coils are wound on one U-magnet, it is necessary to use two relays per phase to prevent faulty operation in case of a through fault. An instantaneous overcurrent unit is included to increase shock resistance.

DESENSITIZING EQUIPMENT (IJD and IFD)

In some instances differential relays will operate on magnetizing inrush currents when the power transformer is first energized. This condition can be overcome by the addition of auxiliary desensitizing equipment. To avoid this problem, the Type STD harmonic restraint relay should be considered.

GENERAL

- (a) For most installations a hand reset multi-contact auxiliary relay is required.
 - (b) Short-circuit duty:

Where short-circuit current available from the bus is sifficient to result in line current transformer secondary current in excess of 50 amperes, a Thyrite® voltage limiter should be connected across the secondary of each line current transformer secondary. Refer to Type CFD, pages 6-3 and 6-4, for additional comments.

BURDENS

		4		•		
Model No.	Coil	Amp	Тар	Freq. (Hz)	Impedance	· Z (Ohms)
IJD52A()	Restraint Restraint Operating Operating	5.0 5.0 0.6 0.6	=	60 50 60 50	0.2 + j0.7 0.2 + j0.6 19.6 + j69.8 19.5 + j58.2	0.7 0.6 72.5 61.4
IJD53C11A C14A	Restraint Operating	5.0 3.2	=	60 60	0.04 + j0.01 0.3 + j0.8	0.04 0.8
IJD53C12A C15A	Restraint Operating	5.0 3.2	=	50 50	0.04 + j0.01 0.2 + j0.7	0.04 0.7
IJD53C19A	Restraint Operating	1.0 .64	_	50 50	1.0 + j0.2 6.2 + j16.5	1.0 17.6
IFD52B-A	1		Refer to in	struction book		

IJD and IFD

Percentage-differential Relays

GE Protective Relays

INTERNAL CONNECTION DIAGRAMS

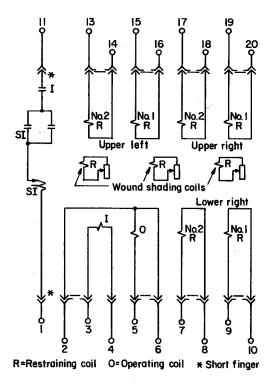


Fig. 3. Internal connections for IFD52B, front view (148A3957)

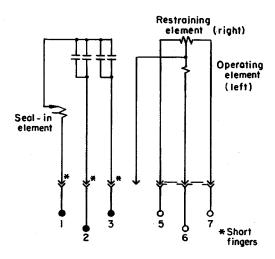


Fig. 4. Internal connections for IJD52A, front view (6209677)

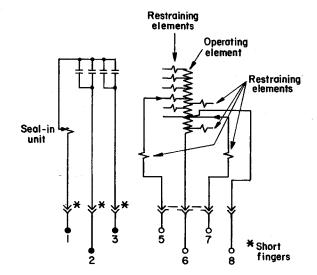


Fig. 5. Internal connections for IJD53C, front view (6556496)

High Speed PVD Bus Differential Voltage Relays

GE Protective Relays

For High-speed Differential Protection of Switchgear. **Used with Standard Bushing-type Current Transformers**

INTRODUCTION

The Type PVD21 relay is a single-phase, high-speed, high-impedance, voltage-operated relay designed to provide protection in bus differential schemes. The Type PVD21 utilizes the same operating principle (high impedance voltage) as the earlier PVD models, but provides faster operating speeds and higher seismic capabilities. Typical operating speed is 20 milliseconds at 4X pickup (See Fig. 2). The Type PVD21 is mechanically interchangeable with the earlier PVD models, and provides additional output contacts as shown in Figs. 3 and 4.

DESCRIPTION

The PVD21 relay is available in four models. All models include a high-speed voltage sensing unit (87L) that operates from the voltage provided by the differentially connected CT's during an internal fault. In addition, a high seismic instantaneous overcurrent unit (87H) is included in the PVD21B and 21D models. The overcurrent unit 87H, which has an electrically separate output contact, may be used to supplement the voltage unit 87L, and/or to implement breaker failure protection when used with a suitable timing relay and other auxiliary devices.

The PVD21A and 21B models use a single Thyrite® stack to limit the magnitude of the voltage developed across the relay. For applications where high internal fault currents can be encountered, the PVD21C and 21D models are available. These relays include two Thyrite stacks, and offer the same basic protection, but with a slight decrease in sensitivity. See the PVD21 instruction book for proper selection and application for the PVD21C and D models.

CURRENT TRANSFORMER REQUIREMENTS

The Type PVD21 relays can be applied for bus protection in most cases where CT's having negligible leakage reactance are used. This generally includes any kind of current transformer with a toroidal core if the windings (on the taps used) are completely distributed about the core. It is preferable that all the CT's in the bus differential circuit have the same ratio. When adding to an existing bus, at least one CT in the new breaker should be ordered with the same ratio as the bus differential CT's in the existing breakers. If the differential circuit unavoidably includes different ratio CT's, application of the PVD21 may still be possible, but special attention must be given to protection against overvoltage conditions during internal faults. Refer applications involving different ratio CT's to the local General Electric Company sales office.

RATINGS

The voltage unit 87L has a continuous rating of 150V.

The current unit 87H is a Hi-G, high seismic instantaneous unit with the following ratings for the coil:

87H UNIT (2-50 AMPERE RANGE)

Link Position	Range (Amperes)	Continuous Rating (Amperes)	One Second Rating (Amperes)
Low High	2-10 10-50	3.7 7.5	130

The contacts of the 87L unit have a current closing rating of 30 amperes for voltages not exceeding 250 volts. The current carrying rating is limited by the seal-in unit rating

Fig. 1. PVD21B relay (out of case)

Fig. 2. Typical operating times of the PVD21 relay—87L unit

(see below). The target and seal-in unit is a Hi-G, high seismic unit, dual rated with 0.2 and 2.0 amp (dc) taps, with the following ratings:

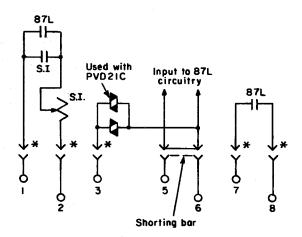
Description	Tap Setting				
	0.2 Amperes	2.0 Amperes			
DC resistance (ohms) Minimum operating (amp) Carry continuous (amp) Carry 30 amps for (sec) Carry 10 amps for (sec)	8.0 0.2 0.3 0.03 0.25	0.24 2.0 3 4 30			

SELECTION GUIDE—Single-Phase (Three Required)

Continuous	Frequency	Voltag (87		Current Unit (87H)		Thyrite ³	Model	Case	Approx Wt in Lb (kg)	
Rating (Volts)	(Hz)	Min	Max .	Min	Max	Thyrite [®] Stacks	Number	Size	Net	Ship
150	60 50 60 50 60 50 60 50	75٧	500∨	::: 2A 2A 2A 2A	50A 50A 50A 50A 50A	} 1	12PVD21A1A A2A 12PVD21B1A B2A 12PVD21C1A C2A 12PVD21D1A D2A	M-1	20(9)	27(12.2)
	60			4A	100A	2	12PVD21D3A			

NOTE: All PVD21 relays include a 0.2/2.0 amp T. & SI Unit used in conjunction with the 87L Unit.

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	



PVD21

High Speed PVD Bus Differential Voltage Relays

GE Protective Relays

CONNECTION DIAGRAM

87L = Voltage-operated unit

S. I. = Seal-in unit

* = Short finger

Fig. 3. Simplified internal connection diagram for PVD21A and PVD21C

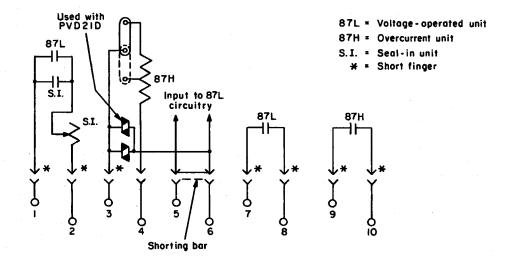


Fig. 4. Simplified internal connection diagram for PVD21B and PVD21D

SBD

Static Bus Differential Relays

GE Protective Relays

For High-speed Differential Protection of Busses and Shunt Reactors

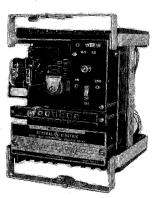
DESCRIPTION

The Type SBD11B is a single-phase, high-speed differential relay. It is specifically designed to provide bus differential protection, but may also be used for differential protection of shunt reactors. A high impedance, voltage measuring circuit with overcurrent supervision is used for fault detection. The utilization of static circuitry eliminates the need for restraint coils or tuned circuits, and results in very short operating times. Output isolation is obtained with a telephone-relay, and a target seal-in unit is provided. A voltage selecting link allows the relay to operate on 48, 125, or 250 volts d-c. The relay is packaged in an S-2 type drawout case and requires no auxiliary CT's.

APPLICATION

The Type SBD11B relay is intended to be applied where sensitive, high-speed differential protection is required; and where severe CT saturation can occur for internal and external faults. The current transformers used with the relay should have fully distributed windings. The SBD can be applied with multi-ratio CT's, provided all CT's are on the same tap (see current transformer requirements).

A conventional differential relay circuit is used with the SBD11B relay connected in parallel with all the current transformer secondaries of each phase (see Figure 2). Complete protection for phase and ground faults requires three single-phase SBD11B relays plus one lockout auxiliary relay, Type HEA, having three normally open contacts in addition to those which are required for tripping circuit breakers. The auxiliary contacts short out a portion of the input circuit after a trip has been initiated. This allows the relay to operate as a straight overcurrent function following lockout relay operation and at the same time insures that the short time rating of the


relay is not exceeded. Thus, the SBD11B may be used to initiate a breaker failure timer.

The high-impedance, voltage-actuated operating principle is used in the SBD11B relay design. For normal conditions, the differential connection of the CT's results in negligible voltage across the relay. During an internal fault, the unbalance in CT currents produces a voltage above relay pickup, resulting in operation. Severe external faults, even those which result in complete CT saturation, will not produce sufficient voltage across the relay to cause operation. This selectivity is always possible because of the low d-c resistance of the CT winding when saturated and its comparatively high magnetizing impedence.

The SBD relay is set by calculating the required voltage and current taps. The objective is to select the lowest available taps which are secure from misoperation for external faults. This will provide maximum relay sensitivity for internal faults. Needed for this calculation are estimates of the maximum fault current available at the bus, and the resistances of the current transformers and the wiring connecting them to the junction point. The relay instruction book fully describes the recommended procedure to set the relay using this information and provides sample calculations.

Operating time for the SBD relay is typically from 5 to 8 milliseconds. The sensitivity level for internal faults as determined by the voltage tap setting will depend on CT excitation characteristics and the number of circuits involved. Recommended practices to insure maximum relay sensitivity are contained in the instruction book, which should be consulted before applying the relay.

Where lightning arresters are located within the zone protected by the relay, the 12SBD11B2A model should be selected.

(Photo 1228725)

Fig. 1. SBD single-phase relay
(out of case)

CURRENT TRANSFORMER REQUIREMENTS

- 1. While a mixture of multi-ratio current transformers may be used, it is essential that the taps used result in all of the CT's having the same ratio. Where part winding taps are employed, it should be insured that the voltage developed across the full winding due to autotransformer action does not exceed the CT hi-pot rating. Otherwise, no special calculations or equipment are required when mixed ratio CT's are used.
- 2. All current transformers should have fully distributed windings. The full winding should be used where possible, but tapped windings can be used if they are also distributed, as they are on General Electric bushing CT's. If the CT's do not meet this requirement, the instruction book describes a method to apply the SBD11B provided the leakage reactance is known.
- 3. The use of dedicated CT's is recommended. The application of other devices in the SBD current transformer circuits will result in less sensitive protection.

Dimensions	Section 16
How to Order	
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16

2RD

Static Bus Differential Relays

GE Protective Relays

CONTACT RATINGS

Three electrically separate, normally open contacts from the output telephone relay are furnished. One of these contacts is provided with a target and seal-in unit.

The spare normally open contacts will make 30 amperes for tripping duty, and will make and carry 30 amperes continuously. The interrupting ratings are as shown in the table to the right.

V. 4.	Interrupting I	Interrupting Ratings (Amps)				
Volts	①Inductive	Non-inductive				
Ac						
115 230	0.75 0.5	2.0 1.0				
Dc						
48 125 250	1.0 0.5 0.25	3.0 1.5 0.75				

① Inductance with L/R ratio of 0.1 sec.

SELECTION GUIDE—Single Phase

	Frequency	Voltage Adjustment	Current	Target and	Dc Control	Model	Case	Approximation Ib	ate Weight (kg)
	(Hertz)	Range	Taps Seal-in Amps	Volts	Number	Size	Net	Shipping	
_	50/60	50-350	0.5/1.0 0.5/2.5	0.2/2.0	48/125/250	12SBD11B1A B2A	\$2	14(6.4)	20(9.1)

AC CURRENT RATINGS

Continuous—1 OA RMS

- 1 Second—160A RMS (Symmetrical)
- 5 Cycles—480A RMS (Symmetrical)
- 2 Cycles—215A RMS (Fully Offset)

CONNECTION DIAGRAMS

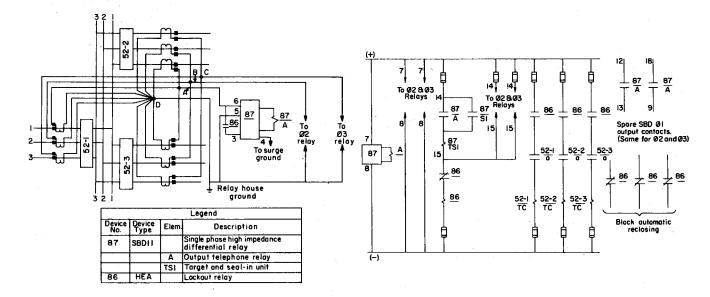


Fig. 2. Typical Elementary Diagram for the SBD11B relays for a three breaker bus (0246A6979, 80)

STD

Percentage-differential Relays

GE Protective Relays

For High-speed Phase and Ground Protection of Power Transformers and Autotransformers

DESCRIPTION

The STD is a harmonic restrained percentage differential relay specifically designed for transformer fault protection. The STD15 through 23 relays differ from each other only in the number of restraint circuits that they include (see Selection Guide). The STD25 through 29 relays differ from STD15 through 23 relays in that they utilize only second harmonics for the harmonic restraint circuit while the others use all the harmonics. Harmonic restraint is employed to prevent undesired tripping as a result of exciting current inrush to the transformer being protected. Inrush to a transformer usually occurs when the transformer is energized or when a nearby fault is cleared thus suddenly restoring normal voltage to the bank. The second harmonic component is the predominant harmonic transformer inrush current.

APPLICATION

In general the STD relays are recommended for application wherever it is desired to provide high speed transformer differential protection that is secure against undesired operations on transformer inrush currents. The STD15 through 23 relays produce harmonic restraint from all harmonics and are thus better suited for use throughout the system where the normal harmonic content is insignificant. Specifically, the STD25 through 29 relays are recommended for use on rectifier transformers where relatively high levels of odd harmonics are normally present. Since these relays produce harmonic restraint on second harmonic currents only they will be unaffected by the odd harmonics generated by the load.

For best performance it is recommended that a separate restraint be used for each set of CT's employed. For example, for a two winding transformer, the two restraint STD15 would suffice. For a three winding transformer (with all three windings loaded) the three restraint STD16 should be used. When a transformer is connected to a ring bus, it is very desirable to have a separate restraint for each of the two associated breakers. For example, a two winding transformer connected to a ring bus on the high side and the low side would best be protected with a four restraint STD17.

In general, it is best to use one set of relays for each transformer to be protected. While it is possible to protect two or more transformers (all switched together) with one set of relays, this results in less sensitive protection as well as a lack of indication of the faulted transformer. When two or more transformers are to be switched separately. it is not recommended that one set of relays be used to protect all of them. This is so because a transformer suddenly energized tends to take the harmonic components of the inrush current from the parallel banks while the fundamental component comes from the system. With only one set of relays protecting two or more banks the harmonic restraint circuit of the relays will not see the harmonic currents. Thus, no harmonic restraint is produced and an undesired trip of all the transformer banks may result from the fundamental component of the inrush that is seen by the relays as operating cur-

The through restraint circuits of all the STD relays are continuously adjustable in the range of 15 thru 40 percent slopes. The

(Photo 8042539)
Fig. 1. Type STD16C relay
(out of case)

slope employed should be selected on the basis of the matching between the CT ratios and the taps on the relay. Each restraint circuit has 8 taps between 2.9 and 8.7 amperes so that on power transformers with fixed taps it is possible to match to within about 5 percent. When protecting load tap changing transformers it will generally not be possible to match taps on the relay to within 5 percent over the complete range of the power transformers. The higher slope settings should be used for these applications.

CONTACTS

The Type STD relays are furnished with one normally open contact. The current-closing rating of the contact is 30 amperes for voltages not exceeding 250 volts. After tripping occurs, it is necessary that the tripping circuit of these relays be opened by an auxiliary switch on the circuit breaker or by other automatic means.

If more than one circuit breaker per contact is to be tripped, or if the tripping current exceeds 30 amperes, an auxiliary relay must be used in conjunction with the STD relay. A hand-reset relay such as the HEA is recommended and normally used.

BURDENS—All STD Relays

Tap Setting Amps	Zero- Restraint	Operating 60 Hz R	Circuit① elays②	Restraint 60 Hz R	
	Pickup③ Amps	Burden VA	Imped Ohms	Burden VA	Imped Ohms
2.9 3.2 3.5 3.8 4.2 4.6 5.0 8.7	0.87 0.96 1.05 1.14 1.26 1.38 1.50 2.61	3.2 2.7 2.4 2.0 1.9 1.6 1.5	0.128 0.108 0.096 0.080 0.076 0.064 0.060	1.3 1.2 1.1 1.0 0.9 0.8 0.7	0.052 0.048 0.044 0.040 0.036 0.032 0.028

① Burden of operating coil is zero under normal conditions.

② Burden of Hertz relay is the same or slightly lower.
③ It should be recognized that pickup current flows to

③ It should be recognized that pickup current flows not only through differential current transformer but also through one of the primary windings of the through current transformer producing some restraint. however, compared to the operating energy, this quantity of restraint is so small that it may be assumed to be zero.

NOTE: Burdens and minimum pickup values are substantially independent of the percent slope settings and are all approximately 100 percent power factor. Figures given are burdens imposed on each current transformer at 5.0 amperes.

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16

ercented differential Delay

Percentage-differential Relays

GE Protective Relays

SELECTION GUIDE—Single Phase

No. Rest.	Amps	Freq.	Slope (%)	Dc Control	Target & Seal-in		Model Number	Cont.	Case Size		ox Wt (kg)
Wind.	<u>L</u>	(112)	(70)	(Volts)	(Amps)	(Amps)	Idomper		Size	Net	Ship
RESTR.	AINT (ON AL	L HARMOI	NICS			.p	 			
		60			0.2/2.0 0.6/2.0		12STD15C5A C3A				
2	-	50		48/125/250	0.2/2.0 0.6/2.0		C6A C4A	1 N.O.		24 (10.9)	34 (15.4)
		60	1		0.2/2.0	1	12STD15D3A	2 N.O.	MI		
		60		·	0.2/2.0 0.6/2.0	1.5	12STD16C5A C3A				
3				48/110/220	0.2/2.0	,,,,,	C7A			27	37
	5	50	15/25/40	·	0.2/2.0 0.6/2.0		C6A C4A			(12.2)	(16.8)
4		60 50		48/125/250	0.6/2.0		12STD17C2A C3A	1 N.O.		30 (13.6)	43 (19.5)
5		60 50			0.6/2.0		12STD18C2A C3A		L2	32	45
		50		48/110/220			C4A			(14.5)	(20.4)
8		60		48/125/250	0.6/2.0		12STD21C1A			38 (17.2)	51 (23.1)
RESTR	AINT C	N 2nd	HARMON	NIC ONLY							
2		60			0.6/2.0		12STD25D2A		LI	29 (13.1)	42 (19)
3		60			0.6/2.0		12STD26C1A		-,	31 (14)	44 (20)
5	5	60	15/25/40	48/125/250	0.2/2.0 1.0	1.5	12STD28C2D C1D	1 N.O.	LD2	37 (16.8)	50 (22.7)
6		60			0.2/2.0 0.6/2.0		12STD29C2D C1D			39 (17.7)	52 (23.6)

① Minimum pickup is 1.5 amperes for the 5 amp tap and 25 percent slope setting.

(0128B1982)
Fig. 2. Elementary diagram for the STD-16 relays for four-circuit transformer protection with three restraints.

I- Instantaneous overcurrent unit S-Slave output relay operated from static sensing unit

86- Type HEA hand-reset relay 52- Power circuit breaker 87- Type STD differential relay

CONNECTION DIAGRAM

SAM200

Static Timing Relays

GE Protective Relays

For General Purpose & Distance Relay Timing Functions

DESCRIPTION

The SAM200 series of relays provide highly accurate and repeatable timing functions that produce a contact closure after a selected time delay has expired. The total time delay consists of the set time delay added to the operating time of the associated output relay (typically 2-6 milliseconds).

The time delay settings are made using toggle switches on the front plate of the relay, easily accessible by removing the front cover. Utilizing high reliability solid-state components, the SAM200 relays operate in stage-settable ranges of .01 to 99 seconds, within ± 3 milliseconds of selected setting.

The SAM200 series are designed to supersede the SAM11A-17G relays. (see Selection Table.)

APPLICATION

The SAM200 relays may be applied wherever accurate and repeatable timing functions are required. The basic timing function is the same for all models of the SAM200 family, but each model is different based on the number of timing functions present, the

presence or absence of targets, and the contact arrangement. This differentiation makes certain models more suitable for specific applications. Table I lists the models and their recommended applications.

RATINGS/OPERATING CHARACTERISTICS

DC Control Voltage:

- Nominal 48, 110, 125, 220, 250
- Minimum 37 volts
- Maximum 280 volts

Timing Settings:

-Range Multiplier - 0.01
Recommended timing range:
0.03 to 0.99 sec. in 0.01 sec. steps
Repeatability: ± 1.5%

-Range Multiplier - 0.1: Recommended timing range: 0.10 to 9.90 sec. in 0.10 sec. steps Repeatability: ± 0.75%

-Range Multiplier - 1.0 Recommended timing range: 1.0 to 99.0 sec. in 1.00 sec. steps

Environmental:

-Operating

- 20° C to +55° C 95% relative humidity (noncondensing)

- Surge: ANSI C37.90 and GE RFI tests IEC 255-4, 255-5

Contact Ratings:

- Make and carry 30 amps for 1 second

TABLE I - SELECTION-APPLICATION GUIDE

MODEL	APPLICATIONS	TIMING FUNCTIONS	TRIP TARGETS*	CASE SIZE	FUNCTIONAL EQUIVALENT
SAM201A1A	General purpose	TU	TA & TB	S1	SAM11B,D,H
SAM202A1A	General purpose2 zone step distance schemes for zone-packaged distance relays	τυ	None	S1	SAM11A,17A, SAM99AA,17D
SAM203A1A	General purpose 3-zone step distance schemes for line protection	TU2 & TU3	TA & TB	SI	SAM13C
SAM204A1A	3-zone step distance schemes for line protection using zone-packaged distance relays	TU2 & TU3	None	SI	SAM16A
SAM205A1A	2-zone step distance schemes for line protection using phase-packaged distance relays	τυ	T1 & T2	SI	SAM17C,G
SAM206A1A	3-zonë step distance schemes for line protection using phase-packaged distance relays	TU2 & TU3	т1,т2,т3	. \$1	SAM14A, SAM14B, SAM99F
SAM207A1A	General purpose	TU	None	52	

^{*}Target identification is user selectable

"General purpose" category includes use of appropriate SAM200 relay for timing function associated with local breaker-failure backup schemes.

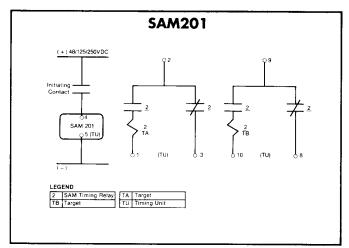
"Phase-packaged" refers to component distance distance relays where the measuring units for all zones associated with one phase or phase-pair are included in one relay case.

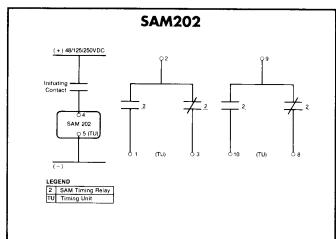
"Zone-packaged" refers to component distance relays where the measuring units of all 3 phases or phasepairs associated with one zone are included in one relay case. (see Section 14 for case size dimensions.)

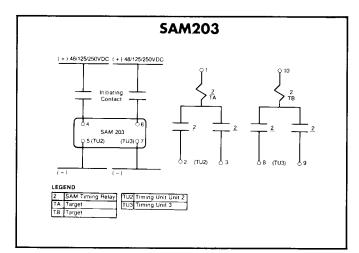
TABLE II - BURDENS

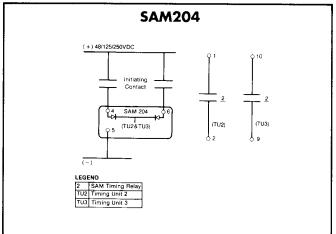
	Power Supply DC Watts						
Model	48	125	250				
201, 202, 205	1.1	3.0	6.3				
203	2.3	6.3	13.5				
204, 206	1.8	4.7	9.9				
207	2.4	6.5	13.9				

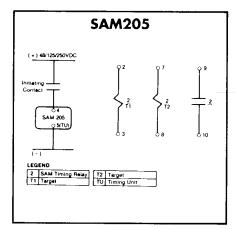
Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16

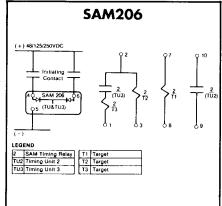


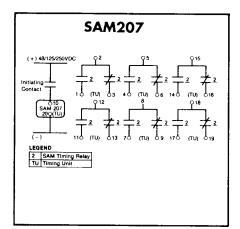

SAM200


Static Timing Relays


GE Protective Relays


External Connections For SAM200 Timing Relays





SECTION: 6

Auxiliary Relays

HAA Auxiliary or Annunciator 1
HEA Multicontact Auxiliary 3
HFA100 Multicontact Auxiliary 8
HFA Multicontact Auxiliary 12
HFA100 Conversion Kit
HGA100 Hinged-armature Auxiliary 18
HGA Hinged-armature Auxiliary 20
HGA100 Conversion Kit
HMA100 Hinged-armature Auxiliary 25
HMA Hinged-armature Auxiliary
NGA Auxiliary
HSA11 Multicontact Auxiliary

HAA

Auxiliary or Annunciator Relays

GE Protective Relays

For Annunciation and Target Applications

DESCRIPTION

Generally two specific forms of the HAA are available—a current operated unit and a voltage operated unit. Example: HAA15A4 is 0.2/2 amperes dc and the HAA15B5 is a 125-volt dc unit. Also two general case designs are available. The single units such as HAA15 use a molded plastic case with glass window and all others the standard drawout case.

The HAA relays contain a standard target unit which is a small hinged armature type relay with a "U" shaped magnet frame, a fixed pole piece, an armature which operates the normally open contacts and the target, and an operating coil.

APPLICATION

The HAA auxiliary relay may be used whenever a target is required. Also each unit has at least one set of contacts available for alarm or other similar use. See Selection Guide and Fig. 3 on page 8-2 for contact arrangements.

A typical application would be to obtain a local annunciation of an abnormal condition and to relay the alarm to a central annunciator. With this arrangement the abnormal condition would operate one of the HAA coil circuits dropping the target and causing the associated unit contacts to relay the alarm to the remote annunciator.

The HAA16B, HAA16C, and HAA19A relays are special high speed dc voltage relays with a pickup of 1 cycle or less at rated voltage for use with transformer pressure relays for increased security. The connections of the HAA16B and HAA16C are shown in Figure 4. Its coil is shorted by a normally closed contact of the transformer pressure relay to prevent the HAA relay from operating in case a voltage surge should flash over the normally closed contacts of the pressure relay.

CONTACT RATINGS

The contacts will make and carry 30 amperes momentarily and will carry 6 amperes continuously.

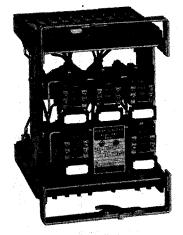


Fig. 1. Type HAA11A relay (removed from case)

The resistance values, pickup values, and the current carrying ability of the operating coils of all the current-operated HAA relays, may be found in Section 16. The appropriate data for the voltage-operated HAA relays may be found in the tables below.

BURDENS

Since these are dc relays the burdens may be easily calculated. In the case of voltage operated relays the burden in watts may be found by using the following expression:

(Photo 821917)

Fig. 2. Type HAA15 relay in flush-mounted molded case.

 $Pdc = \frac{V^2}{R_t} = Burden \text{ (watts)}$

V = voltage rating of relay

R_t = total resistance (coil plus external resistance)

For current operated relays use the following expression:

 $Pdc = I^2R_1 = Burden (watts)$

I = Applied Current

VOLTAGE UNITS—Resistances

Model Number	Contin. Dc Rating (Volts)	Maximum Pickup (Dc Volts)	Dropout (Dc Volts)	Coil Resistance (Ohms)	Internal Resistance (Ohms)	External Resistance (Ohms)
	48 125	41 106	4.8 12.5	840 5600		
12HAA1685 & C5	250 24	212 13	25.0 2.4	5600 14	5600 75	
B4 & C4	32	15 22	3.2	14	100	
B1 & C1 B2 & C2①	48 125	22 60	4.8 12.5	95 95	350 350	650⊙
B3 & C3① 12HAA19A2A	250 48	120 22	25.0 4.8	95 95	350 350	1650①
A1A	125	60	12.5	95	1000	

① These resistors are supplied automatically with the relay and should not be ordered separately.

Dimensions	. Section 16
How to Order	. Section 1
Instruction Books	.Section 17
Target and Contact Data	. Section 16
Relay Standards	. Section 16

Auxiliary or Annunciator Relays

GE Protective Relays

SELECTION GUIDE

	Volts	Volts Dc Current Dc (Amps)	Model Number	Contact Con-	Case	App in I	rox Wt b (kg)	Number Units	Volts	Current Dc	Model	Contact Con-	Case	App in I	rox Wt b (kg)		
Case	DE		Number	figuration	Size	Net Ship	Per Case	Dc	(Amps)	Number	figuration	Size	Net	Ship			
	•••	0.2/2.0 0.6/2.0	12HAA15A4 A5		@			3	48 125 250		12HAA14B3A B2A B1A	В	\$1	6(2.7)	10(4.5		
}	48		12HAA 15B6	E	(Back Connected)					0.2/2.0	12HAA14C1A						
	125 250		B5 B4	-		② (Front Connected)	2(1.4)	(1) 3(1.4)			0.2/2.0	12HAA12A4A		,			
	125	0.2/2.0	12HAA15E1 12HAA15F1						© ront		4	48 125 250		12HAA12B2A B1A B3A	A	S1	7(3.2)
1	48 125		12HAA15H1 H2	F			e i e i e e i i e e greció e i			0.2/2.0 0.6/2.0	12HAA11A1A A2A						
	250 24 32		H3 12HAA16B5* B4*		(Back Connected)			5	48 125 250		12HAA11B3A B2A B1A	D	S2	8(3.6)	12(5.4		
	48 125① 250①		81* 82* 83*	E		201.0	4/3.0	1 M 1	125		12HAA18A1A	ı	S2	8(3.6)	12(5.4		
	24		12HAA16C5*	•	(a)	3(1.4)	4(1.8)			0.2/2.0	12HAA13A1A						
	32 48 125① 250①		C4* C1* C2* C3*		(Front Connected)			6	48 125 250		12HAA13B3A B1A B2A	С	S2	8(3.6)	12(5.4)		
							-	1		1.0	12HAA13D1A				}		
	48 125		12HAA 19A2A A 1 A		S2	8(3.6)	12(5.4)		250		12HAA13E1A	G					

① Includes external resistor.

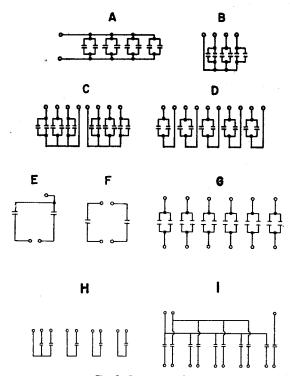


Fig. 3. Contact configurations

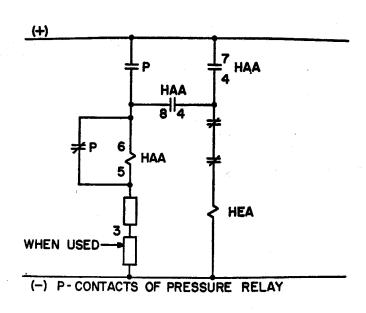


Fig. 4. Schematic for application of HAA16B or HAA16C relay with transformer fault pressure relay

O'includes external resistor.
② Molded case similar to HGA case which includes a glass window in the cover. The back connected relay can be ordered for semi-flush mounting by adding "F" to the model number. Example: 12HAA16B2F

^{*}Used as an interposing relay after the transformer sudden pressure relay.

HEA

Multicontact Auxiliary Relays

GE Protective Relays

APPLICATION

The Type HEA high-speed multicontact, auxiliary relays are applicable where it is desired that a number of operations be performed simultaneously from the operation of a single relay.

Typical functions that can be performed by these relays are:

- Trip the main circuit breaker of a system.
- 2. Trip station auxiliary breakers.
- 3. Trip main or auxiliary field breakers.
- 4. Trip and lock out all breakers on a bus.

Perhaps the most important use of the Type HEA relay is in conjunction with differential relays which protect transformers, rotating apparatus, buses, etc.

CONSTRUCTION

The HEA multicontact, hand-reset auxiliary relays are built with many parts common to the well-known Type SB-1 control and transfer switches.

The mechanical target on the escutcheon plate assembly indicates the position of the relay. The black target indicates the reset position and the orange target, the tripped position. To reset the relay after being tripped, the handle is turned clockwise as indicated by the arrow on the escutcheon plate.

Since basically the HEA relay is similar to the SB-1 switch, it is available with a shaft long enough to allow it to be mounted on panels with a thickness of from 1/8 inch to 2 inches thick, in increments of 1/16 inch.

Like the SB-1 switch, all HEA relays must be ordered for the specific panel thickness, otherwise the relay will be supplied with a shaft long enough to be mounted only on a $\frac{1}{16}$ inch panel.

EXAMPLE:

12HEA61A222 for ³/₄ inch panel relay number would be 12HEA61A222X12 (³/₄ inch = 12/16 =X12).

EXAMPLE:

12HEA63F272 for $1\frac{1}{2}$ inch panel relay number would be 12HEA63F272X24 ($1\frac{1}{2}$ inch = 24/16 =X24).

HEA61, HEA62, and HEA63 OPERATION

The operating shaft is held in the reset position by a positive roller latch which is especially constructed to resist shock and vibration. It is released through the action of the operating coil, in attracting a hinged-armature element.

All HEA relays are made so that they should not normally be tripped manually, although it is possible by removing the rear cover and releasing the hinged-armature element.

SPECIAL MOUNTING

Type HEA61A, 61B, 61C, 62C, 63C and 63G relays can be supplied with a bevel-gear drive which allows the relay to be mounted in locations where normally the depth is not sufficient. The relays can be mounted like the standard but the bevel-gear drive changes the direction by 90 degrees of that portion of the relay that is behind the panel. The bevel-gear drive is available to change the direction up, down, left, or right.

To select the proper model number of the special relay, select the number of the standard relay desired (example—12HEA61C230X2). If a right angle drive upward is desired, add the letters "Rightangle Up" to the standard model number. Hence, the model number would be 12HEA61CRU230X2 (for '4-in. panel).

CONTACT RATINGS

The current-closing rating of the contacts is 50 amperes for voltages not exceeding 600 volts. The contacts have a current-carrying capacity of 20 amperes continuously or 50 amperes for one minute. The interrupting ability of the contacts varies with the inductance of the circuit. The values (in amperes) given in Table I, for dc inductive circuits, are based on the average trip coil.

BURDENS

The burdens for the Type HEA relays are given in Table II.

TABLE I-CONTACT INTERRUPTING RATINGS

Circuit		Amps Noninductive Number of Con		Amps Inductive Circuit Number of Contacts				
Volts	1	2 in Series	4 in Series	1	2 in Series	4 in Series		
24 dc 48 dc 125 dc 250 dè 600 dc	6.0 5.0 2.5 0.75 0.25	30.0 25.0 11.0 2.0 0.45	40.0 25.0 8.0 1.35	4.0 3.0 2.0 0.7 0.15	20.00 15.00 6.25 1.75 0.35	30.0 25.0 9.5 6.5 1.25		
115 ac 230 ac 460 ac 550 ac	40,00 25.00 12.00 6.00	50.0 50.0 25.0 12.0		24.0 12.0 5.0 4.0	50.0 25.0 12.0 10.0	40.0 20.0 15.0		

TABLE II-BURDEN DATA OF TRIP COIL

Intermittent		Coil Resis	Ac Coil	0	Rating of P Target	rotective Relay Coil Amp
Rating Volts	Frequency	Ohms at 25 C	Current Amps at (Rated Volts)	Operating Range Volts	Universal Target Seal-in	Separate Target and Seal-in
24 48 125 250	dc dc dc dc	1.2 4.5 23 103		14-30 28-60 70-140 140-280	2.0 2.0 0.2 0.2	1.0 1.0 1.0 0.2
115 230 460	50/60 Hz 50/60 Hz 50/60 Hz		25 14 7	95-125 190-250 380-500	2.0 2.0 2.0	

HEA

Multicontact Auxiliary Relays

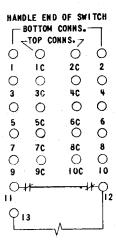
GE Protective Relays

WHERE TO USE

The HEA61 relay is a hand-reset high speed auxiliary relay. When it is used in conjunction with differential relays which are protecting transformers, rotating machines, buses, etc, it is preferred that the auxiliary relay be hand reset to prevent accidental reclosing of breakers when an internal fault has caused the differential relay to operate.

OPERATION

The HEA61 relay is available with 6, 10, or 16 main electrically separate contacts. In addition there are 2 normally closed contacts that are wired for opening the operating coil circuit. See Figure 2.


The time required to trip the relay, from the instant of energization of the coil to the closing of the contacts, is approximately 15 milli-seconds (1 cycle on 60 Hertz basis)—slightly less for opening of the contacts. See Figure 3.

(Photo 8031895)

Fig. 1. 6-contact Type HEA relay (cover removed)

HEA61 Hand Reset

INTERNAL CONNECTIONS

NOTE - CONTACTS II & 12 SHOWN IN RESET POSITION.

Fig. 2. Typical HEA61B relay contact arrangement

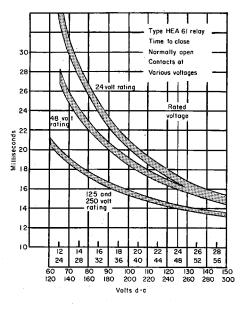


Fig. 3. Typical time-voltage characteristics of Type HEA61 relay

NOTE: When viewed from the handle end of the relay, the odd contacts are on the right-hand side and the even contacts are on the left-hand side starting at the handle end and proceeding to the rear of the relay. Normally, the open contacts are the first contacts (nearest the handle) on the relay, in the reset position.

Example: 12HEA61B233 rated 125-volts dc **3 NO** (contact numbers 1, 2, and 3) **7 NC** (contact numbers 4, 5, 6, 7, 8, 9, 10)

SELECTION GUIDE

Contact A Reset (Latch	rrangement ed) Position	Model Number							Approx W in lb (kg)	
Contact Numbers Norm. Open	Contact Numbers Norm. Closed	24 Volt Dc	48 Volt Dc	125 Volt Dc	220 Volt Dc	250 Volt Dc	115 Volt 50/60 Hz	230 Volt 50/60 Hz	Net	Ship
2 CONTACT	(Plus 2 Cont	acts in Coil Circ	uit)						,	
3-4 3 None	None 4 3-4	12HEA61M40 M41 M42	12HEA61M30 M31 M32	12HEA61M20 M21 M22	12HEA61M80 M81 M82	12HEA61M10 M11 M12	12HEA61M90 M91 M92	12HEA61M100 M101 M102	3 (1.3)	5 (2.2)
6 CONTACT	(Plus 2 Cont	acts in Coil Circ	uit)		7, 7		•			
None 1 1-2 1-3 1-4 1-5	1-6 2-6 3-6 4-6 5-6 6 None	12HEA61A240 A241 A242 A243 A244 A245 A246	12HEA61A230 A231 A232 A233 A234 A235 A236	12HEA61A220 A221 A222 A223 A224 A225 A226	12HEA61A280 A281 A282 A283 A284 A285 A286	12HEA61A210 A211 A212 A213 A214 A215 A216	12HEA61A290 A291 A292 A293 A294 A295 A296	12HEA61A300 A301 A302 A303 A304 A305 A306	4 (1.8)	6 (2.7)

TIEA

Multicontact Auxiliary Relays

GE Protective Relays

HEA61 Hand Reset

SELECTION GUIDE (Cont'd)

Reset (Latcl	Arrangement hed) Position				Model Number	_	•		App in I	rox Wt b (kg)
Contact Numbers Norm. Open	Contact Numbers Norm. Closed	24 Volt Dc	48 Volt Dc	125 Volt Dc	220 Volt Dc	250 Volt Dc	115 Volt 50/60 Hz	230 Volt 50/60 Hz	Net	Ship
10 CONTACT	(Plus 2 Cont	acts in Coil Circ	:vit)						•	
None	1-10	12HEA61B270	12HEA61B250	12HEA61B230	12HEA61B330	12HEA61B210	12HEA61B350	12HEA61B370		
1-2	2-10 3-10	8271 B272	B251 B252	B231 B232	B331 B332	B211	B351	B371	1	
1-3	4-10	B272	B253	B232	B332 B333	B212	B352	B372		l
1-4	5-10	B274	B254	B233	1 5333	B213	B353	B373		ļ.
1-5	6-10	B275	B255	B234	B334	B214	B354	B374		
1-6	7-10	B276	B256	8235	B335	B215	B355	B375	6	8
1-7	8-10			B236	B336	B216	B356	B376	(2.7)	(3.6)
1-8	9-10	B277	B257	B237	B337	B217	B357	8377	1	l
		B278	B258	B238	B338	B218	B358	8378		ľ
1.9	10	B279	B259	B239	B339	B219	B359	B379	. [
1-10	None	B280	B260	B240	B340	B220	B360	B380		į
14 CONTACT	S (Plus 2 Con	tacts in Coil Cir	cuit)	. •						
None	1-14	12HEA61V70	12HEA61V50	12HEA61V30		12HEA61V10	12HEA61V90	12HEA61V110	Т	
1 1	2-14	V71	V51	V31		Vii	V91	Viii	1	
1-2	3-14	V72	V52	V32		l viż	V92	vi iż		
1-3	4-14	V73	V53	V33		vi3	V93	vi 13		
i-4	5-14	V74	V54	V34		V14	V94	V113	1	
1-5	6-14	V75	V55	V35		V15	V95		- 1	
1-6	7-14	V76	V56	V36		V16	V96	V115	7	9
1-7	8-14	V77	V57	V37	•••••	V17		V116	(3.1)	(4)
i-8	9-14	v78	V58	V38			V97	V117		
1-9	10-14	V79	V59	V39		V18	V98	V118	1 1	
1-10	11-14	V80	V60	V40		V19	V99	V119		100
1-11		V81				V20	V100	V120	1 '	
1-12	12-14 13-14	781	V61	V41		V21	V101	V121	1 . 1	
		V82	V62	V42		V22	V102	V122	1 1	
1-13 1-14	14 None	V83 V84	V63 V64	V43 V44		V23	V103	V123		
		L	ļ. · · · · · · · ·	V44		V24	V104	V124	<u></u>	
16 CONTACT	S (Plus 2 Con	tacts in Coil Cir	cuit)							
None	1-16	12HEA61C270	12HEA61C250	12HEA61C230	12HEA61C290	12HEA61C210	12HEA61C310	12HEA61C350		
.1_]	2-16	C271	C251	C231	C291	C211	C311	C351	1 - 1	
1-2	3-16	C272	C252	C232	C292	C212	C312	C352		
1-3	4-16	C273	C253	C233	C293	C213	C313	C353	1 1	
1-4	5-16	C274	C254	C234	C294	C214	· C314	C354	1	
1-5	6-16	C275	C255	C235	C295	C215	C315	C355		
	7-16	C276	C256	C236	C296	C216	C316	C356	1	
1-6		C277	C257	C237	C297	Č217	C317	C357	1 1	
1-6 1-7	8-16		00.00	C238	C297 C298	C218	C318	C359	8	10
1.7 1-8	8-16 9-16	√ C278	C258					, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	والمتكسما	(4.5)
1-7 1-8 1-9		C278	C258 C259	C239	C299 I	C210 I	(310	C350	1/3/61/	
1.7 1-8	9-16	C278	C259	C239	C299 C300	C219 C220	C319 C320	C358 C359	(3.6)	(4.5)
1-7 1-8 1-9	9-16 10-16 11-16	C278 C279 C280	C259 C260	C239 C240	C300	C220	C320	C360	(3.6)	(4.5)
1-7 1-8 1-9 1-10 1-11	9-16 10-16 11-16 12-16	C278 C279 C280 C281	C259 C260 C261	C239 C240 C241	C300 C301	C220 C221	C320	C360 C361	(3.6)	(4.5)
1-7 1-8 1-9 1-10 1-11	9-16 10-16 11-16 12-16 13-16	C278 C279 C280 C281 C282	C259 C260 C261	C239 C240 C241 C242	C300 C301 C302	C220 C221 C222	C320 C321 C322	C360 C361 C362	(3.6)	(4.5)
1-7 1-8 1-9 1-10 1-11 1-12 1-13	9-16 10-16 11-16 12-16 13-16 14-16	C278 C279 C280 C281 C282 C283	C259 C260 C261 C262 C263	C239 C240 C241 C242 C243	C300 C301 C302 C303	C220 C221 C222 C223	C320 C321 C322 C323	C360 C361 C362 C363	(3.6)	(4.5)
1-7 1-8 1-9 1-10 1-11 1-12 1-13	9-16 10-16 11-16 12-16 13-16 14-16 15-16	C278 C279 C280 C281 C282 C283 C284	C259 C260 C261 C262 C263 C264	C239 C240 C241 C242 C243 C244	C300 C301 C302 C303 C304	C220 C221 C222 C223 C224	C320 C321 C322 C323 C324	C360 C361 C362 C363 C364	(3.6)	(4.5)
1-7 1-8 1-9 1-10 1-11 1-12 1-13	9-16 10-16 11-16 12-16 13-16 14-16	C278 C279 C280 C281 C282 C283	C259 C260 C261 C262 C263	C239 C240 C241 C242 C243	C300 C301 C302 C303	C220 C221 C222 C223	C320 C321 C322 C323	C360 C361 C362 C363	(3.6)	(4.5)

HEA

Multicontact Auxiliary Relays

GE Protective Relays

HEA62 Hand Reset

The HEA62 relay is identical to the HEA61 with the exception that on the HEA62 there is a diode-resister combination inserted across the coil circuit. See Fig. 4. This diode-resistor supresses the surge sometimes caused by the interruption of the coil contacts on a dc circuit.

The diode-resistor combination is mounted on a small board that is mechanically attached beneath the trip coil frame.

Although in most cases this diode-resistor combination is unnecessary, it is offered for those unusual conditions where the user might feel it necessary. The HEA62 is available only in the 62A, 62B, and 62C dc series.

NOTE-CONTACTS 7 & 8 SHOWN IN RESET POSITION.

Fig. 4. Typical HEA62A relay contact arrangement

WHERE TO USE APPLICATION

The HEA63 relay is basically a standard HEA61 except it has a rotary solenoid which is used to electrically reset the relay and there are only certain contact sequences available (see Selection Guide). This relay is especially useful where the operator and the HEA63 relay are some distance apart.

OPERATION

The operation of the relay may be understood by referring to Fig. 5. When electrical resetting is desired, a contact or switch is closed which completes the HGA33 relay (which is a part of the overall HEA63 relay and is supplied automatically with the relay) coil circuit through a contact of the HEA relay. This contact is closed in the trip position. Closure of the HGA33 contacts energizes the rotary solenoid which imparts enough rotational force to the HEA shaft through a coupling to cause the HEA to reset and latch. When the HEA resets, the contact which energized the HGA33 coil opens and de-energizes the HGA33 relay. This HGA is of the time delay drop out

HEA63 Hand and Electric Reset

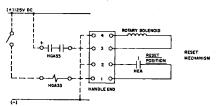


Fig. 5 Typical schematic of HEA63 relay

variety with approximately 0.25 seconds drop out time. The time delay insures that the HEA has fully latched. The contacts of the HGA33 then interrupt the rotary solenoid operating current. The HGA33 contacts have a high interrupting rating which is required because the rotary solenoid current is of a relatively high inductive magnitude.

Rating (Volts)	Rotary Solenoid Coil Current (Amperes)
24	26.8
48	13.5
125	5.5
250	2.8

(Photo 8034092)

Fig. 6. 15-contact Type HEA63 relay with HGA33 (covers removed)

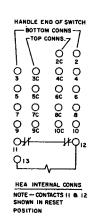


Fig. 7. Typical HEA63B contact arrangement

HEA

Multicontact Auxiliary Relays

GE Protective Relays

HEA63 Hand and Electric Reset

SELECTION GUIDE

	ntact gement	9 t.			Model	Number				Approx Wi	
Reset ((latched) sition	Wi	th Front-connected	Auxiliary (HGA33	BA)	With Back-connected Auxiliary (HGA33B)				(Includes HGA)	
Contact Numbers Norm. Open	Contact Numbers Norm. Closed	24 Volts Dc	48 Volts Dc	125 Volts Dc	250 Volts Dc	24 Volts Dc	48 Volts Dc	125 Volts Dc	250 Volts Dc	Net	Ship- ping
5 CONTA	ACT (Plus	2 Contacts in	Trip Circuit and	d 1 Contact in	Reset Circuit)						
None 2 2-3	2-6 3-6 4-6	12HEA63A241 A242 A243	12HEA63A331 A332 A333	12HEA63A221 A222 A223	12HEA63A211 A212 A213	12HEA63D241 D242 D243	12HEA63D331 D332 D333	12HEA63D221 D222 D223	12HEA63D211 D212 D213	14	18
2-4 2-5 2-6	5-6 6 None	A244 A245 A246	A334 A335 A336	A224 A225 A226	A214 A215 A216	D244 D245 D246	D334 D335 D336	D224 D225 D226	D214 D215 D216	(6.3)	(8.2)
9 CONTA	ACTS (Plu	s 2 Contacts in	Trip Circuit as	nd 1 Contact in	Reset Circuit)						
2 2-3 2-4	3-10 4-10 5-10	12HEA63B272 B273 B274	12HEA638252 B253 B254	12HEA63B232 B233 B234	12HEA63B212 B213 B214	12HEA63F272 F273 F274	12HEA63F252 F253 F254	12HEA63F232 F233 F234	12HEA63F212 F213 F214		
2-5 2-6 2-7	6-10 7-10 8-10	8275 8276 8277	B255 B256 B257	B235 B236 B237	8215 8216 8217	F275 F276 F277	F255 F256 F257	F235 F236 F237	F215 F216 F217	15 (6.8)	19 (8.6)
2-8 2-9 2-10	9-10 10 None	8278 8279 8280	B258 B259 B260	8238 8239 8240	B218 B219 B220	F278 F279 F280	F258 F259 F260	F238 F239 F240	F218 F219 F220		
15 CONT	TACTS (PI	us 2 Contacts	in Trip Circuit o	and 1 Contact	in Reset Circuit)					
2-8 2-9 2-10	9-16 10-16 11-16	12HEA63C318 C319 C320	12HEA63C278 C279 C280	12HEA63C238 C239 C240	12HEA63C218 C219 C220	12HEA63G318 G319 G320	12HEA63G278 G279 G280	12HEA63G238 G239 G240	12HEA63G218 G219 G220		
2-11 2-12 2-13	12-16 13-16 14-16	C321 C322 C323	C281 C282 C283	C241 C242 C243	C221 C222 C223	G321 G322 G323	G281 G282 G283	G241 G242 G243	G221 G222 G223	16 (7.2)	20 (9)
2-14 2-15 2-16	15-16 16 None	C324 C325 C326	C284 C285 C286	C244 C245 C246	C224 C225 C226	G324 G325 G326	G284 G285 G286	G244 G245 G246	G224 G225 G226		

Multicontact Auxiliary Relays

GE Protective Relays

For Ac and Dc Circuit Applications

DESCRIPTION

Type HFA Century Series relays are designed for applications where a number of auxiliary functions must be performed simultaneously. The Century Series coil design provides longer operating life than previous designs as a result of changes in the entire coil insulation system.

The six electrically separate contact circuits are adaptable for either circuit-opening or circuit-closing applications. If more than six circuits are to be controlled, the coils of two or more relays may be connected in series (dc only) or in parallel.

HFA Century Series relays are offered in non-drawout case or drawout case construction.

Non-drawout case HFA relays are available for front connection (suitable for surface mounting only) or back connection (suitable for semi-flush mounting only).

Drawout case HFA relays are back-connected and are suitable for either semi-flush or surface mounting.

LONG-LIFE COIL DESIGN

Basic design features of HFA Century Series coils are as follows:

Spool—the spool on which this coil is wound is made of high thermal strength, glass-filled polyester to obtain long life at elevated temperatures. This material shows no signs of cracking or brittleness under accelerated life testing.

Wire Insulation—the wire insulation is a polyamide-imide wire coating (180 C rating) which retains insulation integrity and mechanical strength at continuous elevated temperatures and which is also non-hydroscopic and fungus resistant. Tefzel insulation is used where required, such as on leads.

Encapsulation—Polybutadiene solvent-less impregnant.

Process

The polyamide-imide insulated coils, wound on high-temperature spools, are pre-baked to drive off all volatile materials, vacuum-impregnated with the solventless varnish, and then post-baked. The impregnation material is also non-hydroscopic and has temperature expansion coefficients compatible with the spool and with the wire, so that stresses do not develop under temperature cycling.

Nameplates for Century Series relays are green to provide easy visual differentiation from standard life relays.

(Photo 8025781)

Fig. 2. Surface mounting
(front connected)

Type HFA151A-H

(Photo 1227763)
Fig. 3. Drawout Case
Type HFA171A-A

Accelerated life tests—conducted at elevated temperature and maximum voltage—have established a projected service life of 40 years to 1 percent failure (that is, when 1 percent of all such relays have failed) at 55 C and 110 percent rated voltage.

APPLICATION

Selection of Dc Relays for Tripping Duty Where Operating Coil Circuit is Opened By An Auxiliary Switch: The operating time of the standard HFA relay is approximately 5 cycles (60 Hertz basis). If used on dc for tripping a circuit breaker, the operating time should be reduced to approximately 1 cycle in order that no appreciable time delay will be added to the operating time of the protective relay. This can be accomplished by selecting a relay which has a lower voltage rating than the control circuit. Recommended voltage ratings for one minute tripping duty are listed below.

Supply Voltage (Volts Dc)	Use Relay with Coil Rated: (Volts Dc)	Oper- Coil Current (Amps)	Target Coil Tap Value in Prot. Relay (Amps)	Time to Close N.O. Contacts at Pickup (60 Hz Basis)
24	6	5.3	2.0	
32	6	7.1	2.0	
48	12	2.7	2.0	Approxi- mately
125	24	1.7	0.2	one
250	48	0.9	0.2	
		ĺ		ļ

When so applied, the HFA operating coil must be opened by the breaker auxiliary switch, to prevent overheating. The in-

creased current through the HFA operating coil will assure operation of the target on the protective relay.

High-Speed Tripping

Type HFA153K and 173K relays are designed to have a pickup time of no more than ½ cycle (60 Hertz basis). The required coil series resistor is included in the basic model number. All models have one long-wipe normally closed contact for inserting this resistor in the coil circuit once the relay is picked up.

CONTACT RATING

Contacts are electrically separate and easily reversible from normally open to normally closed or vice versa. The current-closing rating of the contacts is 30 amperes. The current-carrying rating is 12 amperes continuously or 30 amperes for 1 minute.

Contact Interrupting Ratings

			_		-
Volts Dc	Contact (Amps)	2 Contacts in_Series (Amps)	Volts Ac	Contact (Amps)	2 Contacts in Series (Amps)
NON-IN	DUCTIVI	•			
6 to 24 48 125 250	15 8 3	30 16 6 2	115 230 460	30 20 8	30 30 12
INDUCT	VE		_		
24 48 125 250	6.0 3.5 1.0 0.3	12 6 1.5 0.35	115 230 460	20 10 5	20 10 5

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	

Multicontact Auxiliary Relays

GE Protective Relays

SELECTION GUIDE Self and Hand Reset—Instantaneous Relays

	-			1	<u>•</u>			
Rating (Volts)	Dc Resistance (Ohms)	Impedance	Operating Time (Cycles)2	Contacts	Self-Reset Model Number®	Hand-Reset Model Number®	Ap in Net	prox Wt lb (kg) Ship
NON-D	RAWOUT	MODELS	(3,003)			<u>.</u>	inet	j Snip
		NDARD SPEED)					
6 12 24 32 48	5.6 20 82 145 337				12HFA151A7 F or H A6 F or H A5 F or H A13 F or H A4 F or H	12HFA151B7 F or H B6 F or H B5 F or H B13 F or H B4 F or H		
62.5 110 125 220 250	507 1600 2040 5350 7780		5	Table }	A3 F or H A12 F or H A2 F or H A11 F or H A1 F or H	B3 F or H 812 F or H 82 F or H 81 F or H 81 F or H	5(2.3)	7(3.2
ALTERNA	TING CURREN	IT, 60 HERTZ			4.8			-
120 240	13.5 55	446 1810	2	Table	12HFA151A9 F or H A8 F or H	12HFA151B9 F or H B8 F or H	5(2.3)	7(3.2)
	TING CURREN		<u> </u>		1	50 / 0/1/		
120 240	20 82	540 2160	2	Table	12HFA151A19 F or H A18 F or H	12HFA151B19 F or h B18 F or h		7(3.2)
		LS—S2 Size	Case	1 .	\$ \$ \text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\$\fra			
DIRECT C	URRENT—STA	NDARD SPEED					in property	
6 12 24 32 48	5.6 20 82 145 337		5	Table:	12HFA171A7A A6 A A5 A A13 A A4 A	12HFA171B7A 86 A 85 A 813 A 84 A	12(5.4)	18(8.2
62.5 110 125 220 250	507 1600 2040 5350 7780			1	A3 A A12 A A2 A A11 A A1 A	B3 A B12 A B2 A B11 A B1 A		
ALTERNA	TING CURREN	IT, 60 HERTZ						
120 240	13.5 55	446 1810	2	Table 1	12HFA171A9 A A8 A	12HFA171B9 A B8 A	12(5.4)	18(8.2
LTERNA	TING CURREN	IT, 50 HERTZ						
120 240	20 82	540 2160	2	Table	12HFA171A19 A 18A	12HFA171B19 A B18 A	12(5.4)	18(8.2
HIGH-SI	PEED TRIPF	ING MODE	LS	. ' · · · · · · · · · · · · · · · · · · 	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
Rating (Volts)	Coi Resista (Ohn	nce Oh	STOP	Operating Time (Cycles)②	Contacts Mo	del Number	Approx \ in lb (kg	Vt) Ship
NON-DR		E MODELS®		. , , -			1161	Jinp
24 48 125 250	0.8 2.2 20 82	1	7.5 00 00	0.5		A153K5 F or H K4 F or H K2 F or H K1 F or H	6(2.7)	9(4.1)
DRAWOU	T CASE MOD	ELS - S2 CASE				1 1 1 1 1 m	•	
24	3.0	3 1	8		12HF/	A173K5 A		

0.5

12(5.4)

18(8.2)

Within plus or minus 10 percent.
 60-Hertz-basis. Time for energizing operating coil to closing of normally open contacts.

③ Specify desired mounting on order. For semiflush mounting back-connected add letter "F" to listed model number. For example—12HFA151A2F. If for surface mounting, front connected, add letter "H" to listed model number, for example—12HFA151A2H.

Multicontact Auxiliary Relays

GE Protective Relays

SELECTION GUIDE (Cont'd)

Table 1

,								
		Code Number						
	60	51	42	33	24	15	06	
Position No.		Co	ntact	Arr	anger	nent		
l	+	#	+	#	#	+	#	
2	#	#	+	4	*	#	#	
3	#	1	#	*	*	#	#	
4	#	#	#	#	#	#	#	
5	#	#	#	#	#	#	#	
6 /	4	#	#	#	41-	#	#	

⇒ = Normally open contact, open when relay is de-energized.

= Normally closed contact, closed when relay is de-energized.

Table 3

Table 2

	Code	Numl	oer .
	t	2	3
Position No.	Contact	Arrang	e men t
1	#	11-	#
2	#	+	+
3	#•	≠•	**
4	+	#	#
5	+	*	*
6	÷	+	+

= Normally open contact, open when relay is de-energized.

= Normally closed contact, closed when relay is de-energized.

#= Long-wipe closed contact, closed when relay is de-energized and opens <u>after</u> the standard NC contact. This contact is used to insert the dropping resistor into the coil circuit.

	Code No.
Position No.	Contact Arrangement
	+
2	#
3	#
4	# •
5	+
6	#

= Normally open contact, open when relay is de-energized.

Long-wipe closed contact, used to insert the dropping resistor into the coil circuits.

NOTE:

If contact code is not specified on the order, **Code 60** will be furnished. Relays stocked in the warehouse are stocked with contact Code 60. Conversion from normally open to normally closed or vice-versa, can be easily accomplished in the field.

Multicontact Auxiliary Relays

GE Protective Relays

ELECTRIC RESET RELAYS

Table A lists the combination of reset and mounting available.

Table B lists the voltage and frequencies of the operating and reset coils.

Table C shows the various contact configurations available.

To obtain a complete catalogue number, select the **basic number** from Table A; insert the **form number** from Table B; specify the **contact code** from Table C.

Table A
SELECTION OF HFA ELECTRIC RESET MODELS

Type of		 	Basic	Weight lb(kg)		
Reset	Mounting	Contacts	Number ^①	Net	Ship	
Electric and Hand	Back connected semi-flush		12HFA154B-F	5(2.3)	7(3.2)	
	Front connected surface mounted	Table C	A154B-H	5(2.3)	7(3.2)	
Reset	Back connected drawout case	1000	A174B-A	12(5.4)	18(8.2)	
	Back connected semi-flush		12HFA154E-F	5(2.3)	7(3.2)	
Electric Reset Only	Front connected surface mounted	Table C	A154E-H	5(2.3)	7(3.2)	
	Back connected drawout case		A174E-A	12(5.4)	18(8.2)	

① On hand and electric reset Types HFA154B, 174B, 154E and 174E one contact is wired in series with reset coil to provide positive cut-off. Thus five contacts are available for external circuits.

EXAMPLE;

Flectric reset only
Front connected
Surface mounting
48V dc operate coil
120V 60 Hz reset coil

3 N.O. and 2 N.C. contacts

Select 12HFA154E-H from Table A

Select form number 44 from Table B Select contact code 42 from Table C

Thus, 12HFA154E44H code 42 is the complete relay number.

Table B SELECTION GUIDE—FORM NUMBERS

				Reset	Coil Rating		
	Voltage and Frequency	110V Dc	125V Dc	220V Dc	250V Dc	120V 60 Hz	120V 50 Hz
ò				Form	Numbers		
OPERATE	6V Dc 12V Dc 24V Dc 32V Dc 48V Dc	33	27 26 25 	13	7 6 5	47 46 45 	53
CO-L RAT	62.5V Dc 110V Dc 125V Dc 220V Dc 250V Dc	32 31	23 22 21	12 11	3 2 1	43 42 41	52 51
(ZG	120V 60 Hz 240V 60 Hz 120V 50 Hz 240V 50 Hz	39 38	29 28 	19 18	9 8 	49 48	59 58

Table C—Contact Arrangement

17 TV 28 + Q 3 - 3		Code Number									
	60	51	42	33	24	15					
Position No.		Contact Arrangement									
	11	#	#	#	#	#					
2	#	#	#	#	#	#					
3	#	#	#	#	#	*					
4	#	#	#	#	#	#					
5	#	+	#	#	#	#					
6 ③	+	#	#	#	#	+					

NOTES:

== Normally open contact, open when relay is de-energized.

Normally closed contact, closed when relay is de-energized.

3This contact is reserved for opening the reset coil circuit to protect the intermittently rated reset coil.

If contact code is not specified on the order, Code 60 will be furnished. Relays stocked in the warehouse are stocked with contact Code 60. Conversion from normally open to normally closed or vice-versa, can be easily accomplished in the field.

OPERATING CHARACTERISTICS

Model Number	Pickup Voltage in Percent of Rating		Dropout Voltage in Percent of Rating		Operating Time at Rated Voltage to Close a N.O. Contact		Operating Time to Open a N.Ö. Contact When Voltage Reduced to Zero	
	нот	COLD	Ac	Dc	Ac	De	Ac	Dc
HFA151A, -B HFA171A, -B	80 or Less, Ac or Dc	60 Dc 80 Ac or Higher	30-60	2-10	33 ms or Less	84 ms or Less	14 ms or Less	28 ms or Less
HFA153K HFA173K	. 8 or Less (Dc Only)	6 or Less (Dc Only)	-	2-10	9 ms for Trip	or Less ping Duty		9 ms or Less

Multicontact Auxiliary Relays

For Ac and Dc Circuit Applications

GE Protective Relays

Fig. 1. Surface mounting (back connected) Type HFA51A

(Photo 8025537)
Fig. 2. Semi-flush
(back connected)
Type HFA51A-F

(Photo 8025781)

Fig. 3. Surface mounting (front connected)

Type HFA51A-H

(Photo 1227763)

Fig. 4. Type HFA Multicontact relay.

Drawout

APPLICATION

The type HFA relay is designed for application where a number of auxiliary functions must be performed simultaneously. Six contacts are provided. If more than six circuits are to be controlled, the coils of two or more relays may be connected in series (dc only) or in parallel.

All HFA relays have six electrically separate contact circuits adaptable for either circuit-opening or circuit-closing applications.

The HFA relays are available for front or back connection. The front connected relays are suitable for surface mounting only as shown in Figure 3.

The back connected relays are suitable for either surface mounting or semi-flush mounting: a steel flange is provided for the latter. These are shown in Figures 1 and 2.

The HFA relay is also available in an S2 type draw-out case as shown in Figure 4.

APPLICATION

Selection of Dc Relays for Tripping Duty Where Operating Coil Circuit Is Opened By An Auxiliary Switch.

The operating time of the standard HFA

relay is approximately 5 cycles for the de models (60 Hertz basis). If used on de for tripping a circuit breaker, the operating time should be reduced to approximately 1 cycle in order that no appreciable time delay will be added to the operating time of the protective relay. This can be accomplished by selecting a relay which has a lower voltage rating than the control circuit. Recommended voltage ratings for one minute tripping duty are listed below.

Supply Voltage (Volts Dc)	Use Relay with Coil Rated: (Volts Dc)	Oper. Coil Current (Amps)	Target Coil Tap Value in Prot. Relay (Amps)	Time to Close N.O. Contacts at Pickup (60 Hz Basis)
24	6	5.3	2.0]
32	- 6	7. 1	2.0	Approx-
48	12	2.7	2.0	imately
125	24	1.7	0.2	cycle
250	48	0.9	0.2	

When so applied, the HFA operating coil must be opened by the breaker

auxiliary switch to prevent overheating. The increased current through the HFA operating coil will assure operation of the target on the protective relay.

CONTACT RATING

Contacts are electrically separate and easily reversible from normally open to normally closed or vice versa. The current-closing rating of the contacts is 30 amperes. The current-carrying rating is 12 amperes continuously or 30 amperes for 1 minute.

Contact Interrupting Ratings

	Volts Dc	1 Contact (Amps)	2 Contacts in Series (Amps)	Volts Ac	1 Contact (Amps)	2 Contacts in Series (Amps)
13	NON-IN	DUCTIV	Έ	Tribas Tripas Tribas		
	6 to 24 48 125 250	15 8 3	30 16 6 2	115 230 460	30 20 8	30 30 12
	INDUCT	IVE				
	24 48 125 250	6.0 3.5 1.0 0.3	12 6 1.5 0.35	115 230 460	20 10 5	20 10 5

Multicontact Auxiliary Relays

GE Protective Relays

STANDARD SPEED

The HFA51 and -71 relays are instantaneous, hinged armature, six contact auxiliary relays supplied in either a drawout or non-drawout case for panel mounting.

SELECTION GUIDE—Non-drawout Case

Continuous Rating,	Dc Resistance, (Ohms)①	Impedance Ohms	Operating Time,	Con-	Self-reset Model Number®	Hand-reset Model Number®		ox Wt (kg)
Volts	at 25 C	25 C@	Cycles ②	lacis	Model Number®	Model Hombel®	Net	Ship
DIRECT CL	JRRENT						•	•
6 12 24 32 48 62.5 125 250	5.2 21 82 140 336 510 2000 8000		5	Table 4	12HFA51A48 A47 A46 A45 A44 A43 A42 A41	12HFA51B48 B47 B46 B45 B44 B43 B42 B41	5 (2.2)	7 (3.1)
ALTERNA'	TING CURE	RENT, 60 H	ERTZ					
115 208 230 460	13 45 52 212	415 1350 1650 6600	2	Table 4	12HFA51A49 A50 A51 A52	12HFA51B49 B50 B51 B52	5 (2.2)	·7 (3.1)
ALTERNA	TING CURR	RENT, 50 H	ERTZ					
115 208 230 460	20 52 80 325	575 1880 2300 9200	2	Table 4	12HFA51A54 A86 A55 A56	12HFA51B54 B86 B55 B56	5 (2.2)	7 (3.1)

SELECTION GUIDE—Drawout Case

Continuous Rating	Dc Resistance (Ohms)①	① (Ohms)	Contact	Model	Number	Operating Time	Case	Approx Wt in lb (kg)	
Voltage and Frequency	at 25 C	at 25 C		Self Reset	Hand Reset	(ms)	Size	Net	Ship
6V Dc 12V Dc 24V Dc 48V Dc 125V Dc 250V Dc	5.2 21 82 336 2000 8000			12HFA71A48A A47A A46A A44A A42A A41A	12HFA71B48A B47A B46A B44A B42A B41A	84	\$2 · · ·	12 (5.4)	18 (8.1)
115V 60 Hz 208V 60 Hz 230V 60 Hz 460V 60 Hz	13 45 52 212	415 1350 1650 6600	Table 4	A49A A50A A51A A52A	B49A B50A B51A B52A	34	\$2	12 (5.4)	18 (8.1)
115V 50 Hz 208V 50 Hz 230V 50 Hz 460V 50 Hz	20 52 80 325	575 1880 2300 9200		A54A A86A A55A A56A	B54A B86A B55A B56A	34	\$2	12 (5.4)	18 (8.1)

NOTES:

① Within plus or minus ten percent. ② On 60 Hertz basis (time from energizing operating coil to the closing of the normally open contacts).

③ Model numbers shown are for back connected, surface mounted.

If back connected, semi-flush mounting is desired, add suffix letter "F". Example: 12HFA51A42F.

If front connected, surface mounting is desired, add suffix letter "H". Example: 12HFA51A42H.

4 Intermittent rating.

Table 4

		Code Number								
, N	60									
Position No.		Contact Arrangement								
	4	+ + + + + + +								
2	+	#	1	#	*	#	#			
3	11	#	#	#	#	#	*			
4	#	#	#	#	#	#	#			
5	+	+ + + # # # #								
6	=	#	#	#	+	#	#			

NOTES:

= Normally open contact, open when relay is de-energized.

= Normally closed contact, closed when relay is de-energized.

If contact code is not specified on the order, Code 60 will be furnished. Relays stocked in the warehouse are stocked with contact Code 60. Conversion from normally open to normally closed or vice-versa, can be easily accomplished in the field.

Multicontact Auxiliary Relays

GE Protective Relays

TIME-DELAY APPLICATIONS

The type HFA65D relays are similar to the HFA51 relays except they have adjustable time-delay dropout.

Although the HFA65D relay has a time delay dropout adjustable from 0.25 seconds to 2.0 seconds, it is normally set for 2 seconds at the factory unless otherwise specified.

The type HFA65E relays have an adjustable time-delay pickup with a fixed time dropout of 0.25 seconds. Pickup is normally set for 0.083 seconds unless otherwise specified.

DIMENSIONS

See Section 14.

HIGH-SPEED TRIPPING

The HFA53K relays are designed to have a pickup time of 9ms (one-half cycle—60 Hertz basis). The required external resistor is included in the basic model number. Since one contact is used for the operating coil transfer circuit, only five contacts are available for external circuits.

The HFA73K is a high-speed tripping relay with a pickup time of not more than 9ms. The required series resistor is built into the relay. Since one contact is used for the operating coil transfer circuit, only five contacts are available for external circuits.

Table 5

в.		Code Number							
	60								
Position No.		Co	ntact	Arr	anger	nent			
	4	+ + + + + + +							
2	11	÷	+	#	#	#	#		
3	#	#	#	#	#	#	#		
4	#	#	#	#	#	#	#		
5	+ + + + + + +								
6	ŧ	+	+	#	#	#	#		

NOTES:

- 中 = Normally open contact, open when relay is de-energized.
- Normally closed contact, closed when relay is de-energized:

If contact code is not specified on the order, Code 60 will be furnished. Relays stocked in the warehouse are stocked with contact Code 60. Conversion from normally open to normally closed or vice-versa, can be easily accomplished in the field.

SELECTION GUIDE

Time-delay Relays with Residual-gap Adjustment

Rating (Volts)	Resistance Ohms	e Contacts	Adjustable Time-delay	Time Delay	Adjustable Time-	Time	Approx Wt in lb (kg)	
(voits)	25C ①		Dropout Dropout Pick-up Model No. (Seconds) Model No. (Seconds)		(Seconds)	Net	Ship	
DIRECT	CURRENT-	SURFACE	MOUNTED MO	DELS				•
12 24 32 48 62.5 125 250	11.7 48 77 187 308 1230 4950	Table 5	12HFA65D67 D66 D65 D64 D63 D62 D61	0.25 to 2	12HFA65E67 E66 E65 E64 E63 E62 E61	0.067 to 0.10	. 7 (3.1)	10 (4.5
ALTERN	ATING CUR	RENT-2	5/5000 HERTZ-	-Necessary	Rectifier Includ	ded	·	
120 208 230	790 3580 3580	Table 5	12HFA65D84 D76 D77	0.25 to 2	12HFA65E84 E76 E77	0.067 to 0.10	8 (3.6)	}2 (5.4)

SELECTION GUIDE—Non-drawout Case

Rating	Coil		Operating		Model Number	Approx Wt in lb (kg)		
Volts Dc	Resistance Ohms, 25 C①	Resistor Ohms	Time (Cycles) ②	Contacts	3	Net	Ship	
48 125 250	2 21 82	30 200 800	0.5	Table 6	12HFA53K95 K91 K92	6(2.7)	9(4)	
125 ④ 250 ④	13.5 13.5	10 30	0.5	Table 6	12HFA53K93 K94	6(2.7)	9(4)	

SELECTION GUIDE—Drawout Case

Continuous Rating (Volts Dc)	Dc Coil Resistance Ohms at 25 C	Internal Series Resistance Ohms	Operating Contacts		Contacts Model Number		Appro in lb Net	rox Wt b (kg) Ship	
48 125 250	2.9 21.0 82.0	75 500 2000	9ms	Table 7	12HFA73K3A 1A 2A	\$2	12(5.4)	18(8.1)	

NOTES:

- 1 Within plus or minus ten percent.
- ② On 60 Hertz basis (time from energizing operating coil to the closing of the normally open contacts).
- ③ Model numbers shown are for back connected, surface mounted. If back connected, semi-flush mounting is desired, add suffix letter "F". Example: 12HFA51A42F. If front connected, surface mounting is desired, add suffix letter "H". Example: 12HFA51A42H.

Table 7

@ Intermittent rating.

Table 6

Long-wipe closed contact, closed when relay is de-energized and opens after the standard NC contact. This contact is used to insert the dropping resistor into the coil circuit.

	Code No.
<u> </u>	ı
Position No.	Contact Arrangement
	+
2	#
3	#
4	*•
5	+
6	#

Long-wipe closed contact, used to insert the dropping resistor into the coil circuits.

Multicontact Auxiliary Relays

GE Protective Relays

ELECTRIC RESET RELAYS

Table D lists the combination of reset and mounting available. **Table E** Lists the voltage and frequencies of the operating and reset coils.

Table F and G (below) show the various contact configurations available.

To obtain a complete catalog number, select the **basic number** from Table D; insert the **form number** from Table E; specify the **contact code** from either Table F or Table G.

EXAMPLE:

Electric reset only
Front connected
Surface mounting
Reset coil cutoff contact

48V dc operate coil
115V 60 Hz reset coil

3 N.O. and 2 N.C. contacts

Select 12HFA54E-H
from Table D

Select form number 245
from Table E

Select contact code 42

Thus, 12HFA54E245H code 42 is the complete relay number.

from Table F

SELECTION GUIDE Table D—Basic Number

_		Basic	1 1	. · ·	1 1	Approx Wt in ib (kg)	
Type of Reset	Mounting	Number	Contact	Basic Number	Contact	Net	Ship
	Back-connected Surface mounting	12HFA548-		12HFA54H-			N
Hond and	Back-connected Semi-flush mounting	12HFA54B-F	7	12HFA54H-F		5 (2.2)	7 (3.1)
Electric Reset	Front-connected Surface mounting	12HFA54B-H	7	12HFA54H-H	7	·	
	Back-connected Drawout case	12HFA74B-A	 	12HFA74H-A	7	12 (5.4)	18 (8.1
Hand and	Bock-connected Surface mounting	12HFA54C-	7 1	12HFA54J-	7	5 (2.2)	7 (3.1)
Electric Reset	Back-connected Semi-flush mounting	12HFA54C-F	Table F	12HFA54J-F	Table G		
with Mechanical Target	Front-connected Surface mounting	12HFA54C-H	7 1	12HFA54J-H	-		
	Back-connected Surface mounting	12HFA54E-	7	12HFA54L-			
Electric Reset	Back-connected Semi-flush mounting	12HFA54E-F		12HFA54L-F	7		
Only	Front-connected Surface mounting	12HFA54E-H		12HFA54L-H			
	Back-connected Drawout case	12HFA74E-A	7	12HFA74L-A		12 (5.4)	12 (8.1)

Table E—Form Numbers

				Reset Coil	Rating	
	Voltage and Frequency	48V Dc	125V Dc	250V Dc	115V 60 Hz	230V 60 Hz
				Form Nu		
O	12V Dc	122	182	212	242	272
Operating	24V Dc	123	183	213	243	273 275
Coil	48V Dc	125	185	215	245	275
Rating	125V Dc	127	187	217	247	277
	250V Dc	128	188	218	248	278
	115V 60 Hz		189	219	249	279
	230V 60 Hz	130	190	220	250	280

Ta	Ь	ما	G
ΗŒ	D	æ	u

I WALL O								
		Code Number						
	60	51	42	33	24	15	06	
Position No.		Co	ntaci	Arr	onger	nent		
l	11	=	#	+	#	#	#	
2	4	+	#	#	#	#	#	
3	#	4	#	#	#	#	#	
4	#	#	#	#	*	#	#	
5	#	#	#	#	#	#	#	
6	+	+	#	#	4	#	#	

Table F Code Number							
	60	51	42	33	24	15	
Position No.		onto	ct Ar	rang	emen		
l	#	#	4	#	#	#	
2	#	#	#	#	#	#	
3	#	+	#	#	#	#	
4	#	#	#	#	#	#	
5	11	+	#	#	#	#	
6 ③	4	+	11	#	+	#	

This contact is reserved for opening the reset coil circuit to protect the intermittently rated reset coil.

NOTE for F and G:

= Normally open contact, open when relay is de-energized.

= Normally closed contact, closed when relay is de-energized.

If contact code is not specified on the order, *Code 60 will be furnished*. Relays stocked in the warehouse are stocked with contact Code 60. Conversion from normally open to normally closed or vice-versa, can be easily accomplished in the field.

Multicontact Auxiliary Relays

GE Protective Relays

OPERATING CHARACTERISTICS

Model Number	Pickup Voltage in Percent of Rating		Dropout Voltage in Percent of Rating		Operating Time at Rated Voltage to Close a N.O. Contact		Operating Time to Open a N.O. Contact When Voltage Reduced from Rated to Zero		
	НОТ	COLD	Ac	Dc	Ac	Dc	Ac	Dc	
HFA51A, -B HFA54B, -C, -E, -H, -J, -L HFA71A, -B HFA74B, -E, -H, -L	80 or Less, Ac or Dc	60 or Less, Dc	30-60	2-10	33 ms or Less	84 ms or Less	14 ms or Less	28 ms or Less	
HFA53K HFA73K	80 or Less (Dc Only)	60 or Less (Dc Only)		2-10	9 ms or Less for Tripping Duty			9 ms or Less	
HFA65D		35-80 Ac 30-60 Dc		_	Adjustable 67-100 ms—Fact. Set at 83 ms		2000 m	Adjustable 250 to 2000 ms—Fact. Set at 2000 ms	
HFA65E	•	•	0	•			250	() () () ()) ms () () () () ()	

① These relays are adjusted to give the proper time delays at rated voltage. Since these adjustments affect the pickup voltage point, it is not possible to accurately predict the pickup voltage.

Conversion Kit

Type HFA to Type HFA100 Century Series Relays

GE Protective Relays

To Retrofit Previous Design HFA Auxiliary Relays

DESCRIPTION

GE Century Series Conversion Kits includes all the parts required to retrofit Type HFA auxiliary relays with the longer life Century Series operating coil. This coil design is the result of a successful program aimed at developing auxiliary relay coils with a four-fold increase in service life.

The conversion kit for Type HFA auxiliary relays consists of the appropriate Century Series coil mounted on a laminated core subassembly, a green nameplate with the corresponding Century Series relay model number and a set of simple instructions for conversion in the field. The coil and core are furnished as a subassembly to make removal and replacement of the shading ring unnecessary.

LONG LIFE COIL DESIGN

The basic design features of HFA Century Series coils are as follows:

Spool—the spool on which this coil is wound is made of high thermal strength, glass-filled polymer to obtain long life at elevated temperatures. This material shows no signs of cracking or brittleness under accelerated life testing.

Wire Insulation—the wire insulation is a polyamide-imide wire coating (180 C rating) which retains insulation integrity and mechanical strength at continuous elevated temperatures and which is also non-hydroscopic and fungus resistant. Tefzel insulation is used where required, such as on leads.

Impregnation-Polybutadiene solventless impregnant.

Process

The polyamide-imide insulated coils, wound on high-temperature spools, are prebaked to drive off all volatile materials, vacuum-pressure impregnated with the solventless varnish, and then post-baked. The impregnation material is also non-hydroscopic and has temperature expansion coefficients compatible with the spool and with the wire, so that stresses do not develop under temperature cycling.

Nameplates for Century Series Conversion Kits are green to provide easy visual differentiation from standard life relays.

Accelerated life tests-conducted at elevated temperature and maximum voltagehave established a projected service life of 40 years to 1 percent failure (that is, when 1 percent of all such relays have failed) at 55 C and 110 percent rated voltage.

APPLICATION

Century Series Conversion Kits make it possible to upgrade the reliability of HFA relays already installed in the field. They offer potential savings in maintenance costs and downtimes-particularly in hot or damp locations, or for continuously energized applications.

Conversion kits are available for HFA relay models and operating coil voltage ratings corresponding to those in the Selection Guide table below.

(Photo 8043156)

Fig. 1.

SELECTION GUIDE—HFA Kits®

		Coil Rating—	Volts	-
Present Relay	c.	ontinuous	Intermittant	Conversion Kit Catalog Number
Models	Dc	Ac	Dc@	
	6 12 24 32 48		125 250	0257A9680G8 G7 G6 G5 G4
HFA51A, B HFA53K HFA54B, E HFA71A, B HFA73K HFA74B, E	62.5 110 125 220 250			G3 G20 G2 G21 G1
NFA/46, E	·	120 60 Hz 240 60 Hz		0257A9680G18 G54
		120 50 Hz 240 50 Hz		0257A9680G7 G6
			24 48	0257A9680G59 G25

Ordering Instructions

The order must include the following:

- 1. Model number of conversion kit Model number of present relay
- Coil voltage of present relay

Note: Without the above information, the nameplate included with the kit cannot be properly stamped.
② For fast pickup HFA Models HFA53K(-)F and HFA73K(-)F.

Hinged-armature Auxiliary Relays

GE Protective Relays

To Perform Auxiliary Functions in Ac and Dc Circuits

DESCRIPTION

Type HGA Century Series auxiliary relays are designed to provide additional contacts, higher contact carrying and interrupting ratings, timing, interlocking, electrical separation, or other auxiliary functions.

The Century Series coil design provides longer operating life than previous designs as a result of changes in the entire coil insulation system.

Where more than two circuits are to be controlled, the coils of two or more relays may be connected either in parallel on ac or in series or parallel on dc to obtain the desired results.

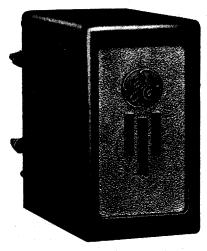
The contact arrangement for each relay (or unit) is double-pole, double-throw (2 normally open, 2 normally closed).

LONG-LIFE COIL DESIGN

Basic design features of HGA Century Series coils are as follows:

Spool—the spool on which the coil is wound is made of high thermal strength, glass-filled polymer to obtain long life at elevated temperatures. This material shows no signs of cracking or brittleness under accelerated life testing.

Wire Insulation—the wire insulation is a polyamide-imide wire coating (180 C rating) which retains insulation integrity and mechanical strength at continuous elevated temperatures and which is also non-hydroscopic and fungus resistant. Tefzel insulation is used where required, such as on leads.


Impregnation—Polybutadiene solventless impregnant.

Process

The polyamide-imide insulated coils, wound on high-temperature spools, are pre-baked to drive off all volatile materials, vacuum-pressure impregnated with the solventless varnish, and then post-baked. The impregnation material is also non-hydroscopic and has temperature expansion coefficients compatible with the spool and with the wire, so that stresses do not develop under temperature cycling.

Nameplates for Century Series relays are green to provide for easy visual differentiation from standard life relays.

Accelerated life tests—conducted at elevated temperature and maximum voltage—have established a projected service life of 40 years to 1 percent failure (that is when 1 percent of all such relays have failed) at 55 C and 110 percent rated voltage. Under nominal conditions—that is, at an ambient-temperature averaging 20 C and at 100 percent voltage—that translates to a median life of 100 years (when 50 percent of all such relays could be expected to have failed) even for ac coils continuously energized.

(Photo 851505)

Fig. 1. Type HGA111A back-connected relay with cover

CONTACT RATINGS

The current-closing rating of the contacts is 30 amperes. The current-carrying rating is 12 amperes continuously or 30 amperes for one minute.

The interrupting ratings for the various voltages are as follows:

Contact-c	ircuit Volts	Single	Double
Ac	Dc	Break	Break
NONINDUC	TIVE CIRCU	ITS	
	6-32	15	30
	48	8	16
	125	2	3
	250	0.3	0.4
115		30	30
230		20	30
INDUCTIVE	CIRCUITS		÷.
	6-32	5	10
	48	3	6
	125	1	1.5
	250	0.25	0.3
115		10	20
- 23 0		-6	10

APPLICATION

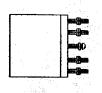
Standard Pickup: the HGA111 is the standard auxiliary relay which is instantaneous in operation and is used for auxiliary functions where intentional delays of over 1½ to 3 cycles are not required and where standard pickup values, as listed in the table, are satisfactory.

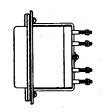
RELAY CHARACTERISTICS

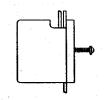
Voltage or Current Pickup Values. The values listed in the table below apply as indicated:

Relay Types	Perce	Percentage of Rated Volts or Amperes					
	Pickup	Dropout Value					
	Value Ac/Dc Hot Coil	Ac	Dc				
HGA111	80%	40 to 50%	2 to 10%				

FIELD CONVERSION KIT


Kits are available with all parts required for retrofitting type HGA relays now in service to achieve increased service life. See page 8-24.


Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	



Hinged-armature Auxiliary Relays

GE Protective Relays

BC surface mounting with cover

BC semi-flush mounting with cover

FC surface mounting with cover

FC surface mounting with cover with provisions for front mounting

SELECTION GUIDE

Type HGA 100 Standard Pickup

	Dc	erita et ili.	1.0			Model Number			An	prox
Coil Rating					Surface Mounted Back Connected	Semi-flush Mounted	Surface Mounted	Surface Mounted Front Connected		lb (kg)
(Volts)	at 25 C	2		(Cycles)	with Studs and Solid Cover	Back Connected with Studs and Cover with Glass Window	Front Connected with Solid Cover	with Solid Cover and Provision for Front Mounting	Net	Ship.
DIRECT (CURRENT									
6	11				12HGA111A7	12HGA111A7F	12HGA111J7	12HGA111S7	T	1
12 .	41	51 811	2 N O		A6	A6F	J6	S6	74	
24 32	160 270	; .	2 N.O. 2 N.C.	2 4 2 2	A5	A5F	J5	\$5	1	
32 48		,	- ' ' ' '		A13	A13F	113	\$13		1
46	585	l .		Approx	A4	A4F	J4	. S4	1	i
62.5	1029			1 2	, a ⁽⁻⁾				2(0.9)	3(1.4)
110	3035		ተ ተ ተተ	1	A3	A3F	J3	\$3		1
125	3850	1			A12 A2	A12F	J12	\$12	1 ' '	1
				1		A2F	J2	S2		1
250	15320			1,177	A1	Alf	11	S1	1.	
ALTERNA	ATING CL	RRENT-	-60 HERTZ					<u> </u>		
120	99	915	Same	Approx	12HGA111A9	12HGA111A9F	12HGA111J9	12HGA111S9	T	1
240	372	3590	as Dc	2	A8	A8F	18	\$8	2(0.9)	3(1.4)
ALTERNA	ATING CL	RRENT-	-50 HERTZ			¥ 4				
120	136	985	Same	Approx	12HGA111A19	12HGA111A19F	12HGA111J19	12HGA111\$19	1000	0(1.4)
240	567	3940	as Dc	2	A18	A18F	J18	\$18	2(0.9)	3(1.4)

① Within plus or minus 10 percent.

² The ac impedence for the standard relay with armature in the dropped position is 1/2 of listed value.

Hinged-armature Auxiliary Relays

GE Protective Relays

For the Performance of Auxiliary Functions in Ac and Dc Circuits

APPLICATIONS

The Type HGA hinged armature auxiliary relays are designed to provide additional contacts, higher contact carrying and interrupting ratings, timing, interlocking, electrical separation, or other auxiliary functions.

Where more than two circuits are to be controlled, the coils of two or more relays may be connected either in parallel on ac or in series or parallel on dc to obtain the desired results.

GENERAL-PURPOSE RELAYS

Standard Pickup: The HGA11 is the standard auxiliary relay which is instantaneous in operation and is used for auxiliary functions where intentional delays of over 1½ to 2 cycles are not required and where standard pickup values, as listed in the table, are satisfactory.

The contact arrangement for each relay (or unit) is double-pole, double-throw (2 normally open, 2 normally closed).

Low Pick-up: The HGA14 relay has been designed with a shorter armature gap which is obtained by the setting of an adjustable back contact. This construction allows a lower pickup value than normal and a faster pickup time. Also relays are available for tripping duty and target operation with pickup times of ½ cycle on a 60-cycle basis, and are intermittently rated.

The contact arrangement is one single-pole, double-throw contact and one normally open contact for each relay (or unit). The second normally closed contact is not used with the low pickup setting. This second contact can be used if the wipe is restored to normal and the control spring tension increased thus raising the pickup toward the 80 percent (60 percent dc cold) level which would apply with standard gap relays.

AC UNDERVOLTAGE

Low Dropout. The Type HGA14BH(-)A relay is a three-phase residual voltage relay with low dropout. A primary application is as on automatic throwover schemes where induction motors are the principal load.

TIME-DELAY RELAYS

Fixed-time Dropout. The HGA17 is designed to provide a time-delay dropout of approximately 15 cycles (60-cycle basis). The delay is obtained by momentarily sustaining the magnetic flux at the relay pole face by means of induced currents in a copper ring which acts as a shorted one-turn

coil. A small delay in pickup time is also obtained since the induced currents also tend to retard the buildup of the relay magnetic field. Operating times are measured at or from rated voltage or amperes for pickup and dropout times respectively.

Adjustable-time Pickup: The HGA14D has a resistor-capacitor timing circuit with the resistor being adjustable to vary the charging time of the capacitor which is connected across the relay operating coil.

Contact arrangement for the fixed-time dropout (HGA17) is one single-pole, double-throw contact and one normally open contact per relay (or unit).

RELAY CHARACTERISTICS

Voltage or Current Pickup Values. The values listed in the table below apply as indicated for all relays.

Relay	Pickup	Percentage of Rated Volts or Amps					
	Classi-	Pickup	Value	Dropout Value			
	fication	Ac	Dc	Ac	Dc		
HGA11 HGA14 HGA17A,B,C HGA17D,H	Standard Low Time Time	80% 40% 30-40% 80% Max.	80% 30% 20-30% 60% Max.	40-50% 20-30% 2-10% 5-15%	2-10% 2-10% 2-10% 2-10%		

CONTACT RATINGS Standard Pickup Relays— Type HGA11

The current-closing rating of the contacts is 30 amperes. The current-carrying rating is 12 amperes continuously or 30 amperes for one minute.

Interrupting Ratings of Contacts in Amperes

Contact-circuit Volts

Confact-c	Ircuit VOITS	Single	Double
Ac	Dc	Break	Break
NONINDU	TIVE CIRCL	JITS	
	6-32	15	30
	48	8	16
	125	2	3
	250	0.3	0.4
115	:::	30	30
230		20	30
INDUCTIVE	CIRCUITS		
	6-32	5	10
	48	3	6
	125	1	1.5
	250	0.25	0.3
115		10	20
230		6	10

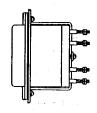
(Photo 8043229) Fig. 1. Type HGA14AL

connected relay with cover

Low Pickup Relays—Types HGA14, HGA17

The current closing ratings of the contacts is 30 amperes. The current carrying rating is 12 amperes continuously or 30 amperes for one minute. The interrupting ratings (noninductive circuits) for the various voltages are as follows:

Contact-cir	cuit Volts	Single
Ac	Dc	Single Break
NONINDUCTIVE	CIRCUITS	•
	6-32 48 125 250	10 5 0.6 0.25
115 230		20 , 10
INDUCTIVE CIRC	UITS	
	6-32 48 125 250	5 3 0.5 0.2
115 230		10 5


Dimensions	. Section 16
How to Order	. Section 1
Instruction Books	
Target and Contact Data	. Section 16
Relay Standards	. Section 16



Hinged-armature Auxiliary Relays

GE Protective Relays

BC surface mounting with cover

BC semi-flush mounting with cover

FC surface mounting with cover

FC surface mounting with cover with provisions for front mounting

SELECTION GUIDE—MOLDED CASE RELAYS

	Dc					Model N	lumber		J AD	prox
Coil Rating (Volts)	Res Ohms at 25 C ①	Ac Ohms ②	Contact	Pickup Time (Cycles)	Surface Mounted Back Connected with Studs and Solid Cover®	Semi-flush Mounted Back Connected with Studs and Cover with Glass Window	Surface Mounted Front Connected with Solid Cover 3	Surface Mounted Front Connected with Solid Cover and Provision for Front Mounting		lb (kg) Ship.
Genera	I-Purpos	e Relay	'S							
TYPE HG	A STANE	OARD PIC	KUP					4.0		14 15
DIRECT (CURRENT					eret i				
6 12 24 32 48 62.5 110 125 220 250	10 40 160 250 512 830 2460 3650 9600 15500		2 N.O. 2 N.C. 1 1 1 1	Approx 2	12HGA11A58 A57 A56 A55 A54 A53 A60 A52 A59 A51	12HGA 11A58F A57F A56F A55F A54F A53F A60F A52F A59F A51F	12HGA11J58 J57 J56 J55 J54 J53 J60 J52 J59	12HGA 11S58 S57 S56 S55 S54 S53 S60 S52 S59 S51	2 (0.9)	3 (1.4)
ALTERNA	ATING CU	RRENT-	-60 HERTZ					w		を受力
115 230	90.5 367	1000 3960	Same as Dc	Approx 2	12HGA11A70 A71	12HGA11A70F A71F	12HGA 11J70 J7 1	12HGA11S70 \$71	2 (0.9)	(1.4)
ALTERNA	ATING CU	RRENT-	-50 HERTZ							
115 230	98.5 512	830 4270	Same as Dc	Approx 2	12HGA11A74 A75	12HGA11A74F A75F	12HGA 1 1J74 J75	12HGA11874 875	2 (0.9)	3 (1.4)
DIRECT C		-ICKUP (40% or kaning	TOT AC OF	30% of Rating for DC		 -			
6	10		r - · · · · · · · · · · · · · · · · · · 		12HGA14A58	12HGA14A58F	10110 41 44 750	T		
12 24 32 48 62.5 110 125 220 250	40 160 250 512 830 2460 3650 9600 15500		2 N.O. 1 1 1 T T	Approx 1	A57 A56 A55 A54 A53 A60 A52 A59 A51	A57F A56F A55F A54F A53F A60F A59F A59F A51F	12HGA14AF58 AF57 AF56 AF55 AF54 AF53 AF60 AF52 AF59 AF51		2 (0.9)	3 (1.4)
ALTERNA	ATING CU	RRENT-	-60 HERTZ			* * * * * * * * * * * * * * * * * * * *				TO SERVICE OF THE SER
115 230	90.5 376	1000 3960	Same as Dc	Approx 1	12HGA 14A70 A71	12HGA 14A70F A7 1F	12HGA14AF70 AF71	-	2 (0.9)	3 (1.4)
ALTERNA	TING CU	RRENT-	50 HERTZ							-
115 230	98.5 512	830 4270	Same as Dc	Approx 2	12HGA14A74 A75	12HGA14A74F A75F	12HGA14AF74 AF75	= =	2 (0.9)	3 (1.4)

① Within plus or minus 10 percent.

(Continued on page 8-22)

² The ac impedence for the standard gap relays with armature in dropped position is 1/2 of listed value.

③ To obtain glass in cover of HGA relays, add suffix "G" to Model. Example: Model 12HGA11A58G.

Hinged-armature Auxiliary Relays

GE Protective Relays

MOLDED CASE RELAYS (Cont'd)

	Dc Res				Model Number				FOY
Coil	Coil Res Ohms Ohms (Volts) at 25 C	Ac	Contact	Pickup	Surface	Semi-flush	Front Connected with	Approx Wt in lb (kg)	
Rating (Volts)		Conider	(Cycles)	Back Connected with Cover and Studs3	Back Connected with with cover	Cover (No Studs)③	Net	Ship.	
TIME DE		l Time (1	5 Cycles Drop	oout) (Coppe	er Slugged Coil)				
12	24.5		2 N.O. 1 N.C.		12HGA17A57 A56	12HGA17A57F A56F	12HGA17C57 C56		T
24 32 48 62.5	98 153 375 585 1700			Approx	A55 A54 A53 A70	A50F A55F A54F A53F A70F	C56 C55 C54 C53 C70	2 (0.9)	3 (1.4)

ALTERNA	TING CURRE	NT50/	60 HERTZ						
115	1700		Same as	Approx	12HGA17A63@	12HGA17A63F@	12HGA 17C63@	4	5
230	1700		Dc	2	A64@	A64F@	C64@	(1.8)	(2.3)

FIXED TIME PICKUP WITH APPROX 15-CYCLE DELAY ON DROPOUT

	Dc						Model Number		Δn	Drox
Coil Rating (Volts)	Res Ohms at 25 C	Ac Ohms ②			Back Connected	Front-Connected with Cover (No Studs)③	Wt in Net	prox lb (kg) Ship.		
DIRECT C	URRENT									
12 24 32 48 62.5 110 125 220 250	24.4 98 153 375 585 1700 2280 10300 10300		60%	2 N.O. 2 N.C.	3.5	12HGA17H57 H56 H55 H54 H53 H70 H52 H68 H51	12HGA17H57F H56F H55F H54F H53F H70F H52F H68F H51F	12HGA17D57 D56 D55 D54 D53 D70 D52 D68 D51	(0.9)	3 (1.4)
ALTERNA	TING CURI	RENT 50/	60 HERT	Z						
115	1700 1700		80%	Same as Dc	3.5	12HGA 17H63@ H64@	12HGA 17H63F④ H64F④	12HGA 17D63@ D64@	4 (1.8)	5 (2.3)

MOLDED CASE TRIPPING RELAYS—1/2 Cycle or Less (For tripping two breakers)

Voits	Pickup	!		Back Connected with Cover®						
Dc Intermittent	Volts	Contact		⑥ For 3—1-amp Targets	6 For 3—0.6-amp Targets	6 For 3—0.2-amp Targets	For Carrier GCX or GCY	Net	Ship	
24 32 48 125 250		2 N.O. 1 N.C.	12HGA14AM5 AM4 AM3 AM2 AM1	12HGA14AM10 AM9 AM8 AM7 AM6	12HGA14AM15 AM14 AM13 AM12 AM11	12HGA14AM20 AM19 AM18 AM17 AM16	12HGA14AM28 AM26 AM25			
	80%	የየየ			ront Connected with Co	ver3		2	. 3	
24 32 48 125 250	24 or Less 1 4 32 48 125	12HGA14AL5 AL3 AL2 AL1	12HGA14AL10 AL9 AL8 AL7 AL6	12HGA14AL15 AL13 AL12 AL11	12HGA14AL20 AL19 AL18 AL17 AL16	12HGA14AL29 AL28 AL26 AL25	(0.9)	(1.4)		

MOLDED CASE—Adjustable Time Delay on Pickup

Volts	Pickup		Pickup	Back Conn.©	Approx Wt lb		
Dc	Volts	Contact	Time (Cycles)	with Cover	Net	Ship.	
48	15 or Less	2 N.O.	2- 4	12HGA14D1			
125 125 125 125 125	61-67 30-35 65-70 65-70	T T #	2- 6 1- 3 4-24 2-12	D2 D3 D7 D6	8 (3.6)	12 (5.4)	
250 250	65-70 65-70		1- 6 1-12	D4 D5			

nished for semi-flush mounting. Add "F" to regular model number when ordering. Example: 12HGA11A52F. Cover will have glass windows.

Auxiliary Relays

Within plus or minus 10 percent.
 The ac impedance for the standard gap relays with armature in dropped position is 1/2 of listed value.
 To obtain glass in cover of HGA relays add suffix "G" to Model. Example: Model 12HGA17H57G.
 External restifier and resistor included as required.

External rectifier and resistor included as required.

⑤ External capacitor(s) included as required.

Although the relays are voltage operated, these target currents are shown only as an example to aid in selecting the proper relay.
 Note: Any back-connected HGA Relay with molded case can be fur-

Hinged-armature Auxiliary Relays

GE Protective Relays

SELECTION GUIDE—Drawout Case Relays

Coil		Each Unit		Pickup	Mod	del Number	Case	App in II	rox Wt b (kg)
Rating (Volts)	Dc Ohms at 25C①	Ac Impedance	Contact	Time (Cycles)	Standard Pickup	Low Pickup	Size	Net	Ship.
General-	Purpose								
SINGLE U	NIT—STANDA	ARD OR LOW F	PICKUP - DO	:					-
6 12 24 48 62.5 125 220 250	10 40 160 512 830 3650 9600 15500		2	HGA11 Approx 2 HGA14 Approx	12HGA11R15A R16A R1A R2A R3A R4A	12HGA14AH15A AH1A AH2A AH3A AH4A AH16A AH5A	\$1	7 (3.2)	9 (4.1)
ALTERNA	TING 60 HERT	rz .			·				
115 230	90 376		0	Same as Dc	12HGA11R6A R9A	12HGA14AH6A AH9A	S1	7 (3.2)	9 (4.1)
ALTERNA	TING 50 HERT	z							
115 230	99 512		2	Same as Dc	12HGA11R7A R10A	12HGA14AH7A AH10A	\$1	7 (3:2)	9 (4.1)
DOUBLE L	INIT—STAND	ARD OR LOW	PICKUP - D	c					
6 12 24 48 62.5 125 250	10 40 160 512 830 3650 15500		2	HGA11 Approx 2 HGA14 Approx	12HGA11N342A N373A N1A N32A N63A N94A N125A	12HGA 14AB342A AB1A AB32A AB63A AB94A AB125A	52	9 (4.1)	11 (5)
ALTERNA	TING 60 HERT	z						1	
115 230	90 376		2	Same as Dc	12HGA11N156A N249A	12HGA14AB156A AB249A	\$2	9 (4.1)	11 (5)
ALTERNAT	ING 50 HERT	z							
115 230	99 512		2	Same as Dc	12HGA11N187A N280A	12HGA14AB187A AB280A	S2	9 (4.1)	11 (5)
Time Del	ay								
SINGLE UI	NIT—FIXED TI	ME (15 Cycles	Minimum [Propout) (Co	pper Slugged Coil) - DC		/		
12 24 32 48 62.5 125 250	25 98 153 375 585 2280 10300		2	2		12HGA17J1A J2A J3A J4A J5A J6A J7A	SI	7 (3.2)	9 (4.1)
ALTERNAT	'ING 50/60 H	ERTZ						<u> </u>	
115	1700		2	Approx 2		12HGA17J10A	\$1	7 (3.2)	9 (4.1)

SINGLE-UNIT SHORT GAP WITH RECTIFIERS

60 Cycles—Low Burden—For Use with Bushing Potential Device

Volts Ac	3 Phase Basis		Burden	Canhanh	Model	Case	Approx Wt in lb (kg)		
Single-phase and Three-phase		out® olts)	VA	Contact	Number	Size	Net	Ship.	
-	Min.	Max.							
120 208	18 30	50 90	1.2	+	12HGA14BH1A 2A	SI	9 (4.1)	12 (5.4)	

[©] Within plus or minus 10 percent.
© HGA11 (standard pickup) double pole, double throw HGA14 (low pickup) one single pole, double throw.
HGA17 (time delay) plus one normally open contact per unit.
© In single phase applications multiply these values by 1.33.

Conversion Kit

Type HGA to Type HGA100 Century Series Relays

GE Protective Relays

To Retrofit Previous Design HGA Auxiliary Relays

DESCRIPTION

GE Century Series Conversion Kits include all the parts required to retrofit Type HGA auxiliary relays with the longer life Century Series operating coil. This coil design is the result of a successful program aimed at developing auxiliary relay coils with a four-fold increase in service life.

The HGA Relay Conversion Kit consists of the appropriate Century Series coil, a green nameplate with the corresponding Century Series HGA model number and a set of simple instructions for conversion in the field.

APPLICATION

Century Series Conversion Kits make it possible to upgrade the reliability of HGA relays already installed in the field. They offer potential savings in maintenance costs and downtimes . . . particularly in hot or damp locations, or for continuously energized applications.

Conversion kits are available for HGA relay models and operating coil voltage ratings corresponding to those in the Selection Guide table below.

LONG-LIFE COIL DESIGN

Basic design features of HGA Centurey Series coils are as follows:

Spool—the spool on which the coil is wound is made of high thermal strength, glass-filled polymer to obtain long life at elevated temperatures. This material shows no signs of cracking or brittleness under accelerated life testing.

Wire Insulation—the wire insulation is a polyamide-imide wire coating (180 C rating) which retains insulation integrity and mechanical strength at continuous elevated temperatures and which is also non-hydroscopic and fungus resistant. Tefzel insulation is used where required, such as on leads.

Impregnation—Polybutadiene solventless impregnant.

Process

The polyamide-imide insulated coils, wound on high-temperature spools, are pre-baked to drive off all volatile materials, vacuum-pressure impregnated with the solventless varnish, and then post-baked. The impregnation material is also non-hydrosc-

pic and has temperature expansion coefficients compatible with the spool and with the wire, so that stresses do not develop under temperature cycling.

Nameplates for Century Series Conversion Kits are green to provide easy visual differentiation from standard life relays.

Accelerated life tests—conducted at elevated temperature and maximum voltage—have established a projected service life of 40 years to 1 percent failure (that is, when 1 percent of all such relays have failed) at 55 C and 110 percent rated voltage. Under nominal conditions—that is, at an ambient-temperature averaging 20 C and at 100 percent voltage—that translates to a median life of 100 years (when 50 percent of all such relays could be expected to have failed) even for ac coils continuously energized.

Fig. 1

SELECTION GUIDE—HGA Kits

Present Relay	HGA	Coil Rating Volts	Conversion Kit
Models	Dc	٩c	Catalog No.
HGAlla, J	6 12 24 32 48 62.5 110 125 220		0257A9681G15 G13 G10 G9 G7 G6 G4 G3 G2
	250	į	ĞÎ
		120-60 Hz 240-60 Hz	0257A9681G46 G99
		120-50 Hz 240-50 Hz	0257A9681G101 G100

NOTE: To convert from Acto D corvice-versa requires a different pole piece.

ORDERING INSTRUCTIONS

The order must include the following: model number of conversion kit model number of present relay coil voltage of present relay

Without the above information, the nameplate included with the kit cannot be properly stamped.

HMA100

Hinged-armature Auxiliary Relays

GE Protective Relays

DESCRIPTION

The Type HMA relay is an instantaneous auxiliary device whose contacts are opened and closed by the movement of a hinged armature.

Type HMA Century Series auxiliary relays are designed to provide additional contacts, higher contact carrying and interrupting ratings, timing, interlocking, electrical separation and other auxiliary functions.

The Century Series coil design provides longer operating life than previous designs as a result of changes in the entire coil insulation system.

LONG-LIFE COIL DESIGN

Basic design features of HMA Century Series coils are as follows:

Spool—the spool on which the coil is wound is made of high thermal strength, glass-filled polymer to obtain long life at elevated temperatures. This material shows no signs of cracking or brittleness under accelerated life testing.

Wire Insulation—the wire insulation is a polyamide-imide wire coating (180C rating) which retains insulation integrity and mechanical strength at continuous elevated temperatures and which is also non-hydroscopic and fungus resistant. High temperature insulation is used where required, such as on leads.

Impregnation—Polybutadiene solventless impregnant.

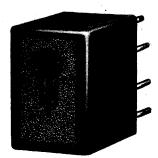
Process

The polyamide-imide insulated coils, wound on high-temperature spools, are pre-baked to drive off all volatile materials, vacuum-pressure-impregnated with the solventless varnish, and then post-baked.

For Ac and Dc Auxiliary Functions

The impregnation material is also nonhydroscopic and has temperature expansion coefficients compatible with the spool and with the wire, so that stresses do not develop under temperature cycling.

Nameplates for Century Series relays are green to provide easy visual differentiation from standard life relays.


Accelerated life tests—conducted at elevated temperature and maximum voltage—have established a projected service life of 40 years to 1 percent failure (that is, when 1 percent of all such relays have failed) at 55C and 110 percent rated voltage. Under nominal conditions—that is, at an ambient temperature averaging 20C and at 100 percent voltage—that translates to a median life of 100 years (when 50 percent of all such relays could be expected to have failed).

APPLICATION

The HMA111A is a back-connected relay supplied either with or without cover and having a double-pole, double-throw contact arrangement. The HMA111B is similar to the HMA111A except that it is front connected and is available only without cover. Relays for dc service are adjusted to pick up at 60 percent of their rating when cold and 80 percent when hot. Relays for ac service are adjusted to pick up at 80 percent of their rating.

FIELD CONVERSION

For conversion of HMA relays in the field, it is recommended that the entire relay be replaced with a Century Series HMA, since this relay is not readily disassembled and reassembled.

(Photo 8011265)

Fig. 1. Type HMA111A back-connected relay with cover

RATINGS

These relays are available with coil ratings for standard voltages up to and including 240 volts 50 or 60 Hertz ac and up to 250 volts dc. The 250-volt relay uses a resistor in series with the coil.

The current-closing rating of the contact is 30 amperes. The current-carrying rating is 12 amperes continuously or 30 amperes for one minute.

The interrupting ratings for the various voltages are as follows:

ontact Circuit	Nonin	ductive	Inductive		
or	Break	Double Break Amp	Single Break Amp	Double Break Amp	
.5 Dc	15	30	6	12	
	10	20	3	6	
	5	10	1.5	3	
	1.5	3	0.6	1.2	
	1.5	3	0.6	1.2	
	0.3	0.5	0.1	0.3	
	0.3	0.5	0.1	0.3	
60	20	30	15	15	
	13	25	10	10	
50	20	30	15	15	
	13	25	10	10	
	Fred or Hz	Freq. Single Preak Amp 15 10 15 15 10 20 13 15 15 15 15 15 15 15 15 15 15 15 15 15	Freq. or Hz Single Break Amp Single Break Amp Single Break Single Bre	Freq. or Hz Single Break Amp Single Break Amp	

Dimensions	. Section 16
How to Order	. Section 1
Instruction Books	. Section 17
Target and Contact Data	. Section 16
Relay Standards	.Section 16

Hinged-armature Auxiliary Relays

GE Protective Relays

SELECTION GUIDE—Approximately 35 Milliseconds Pickup

				Mode	Number		Appre	ox Wt
Coil Rating	Dc Res	Res	Back Connected	Front Connected	Flush Back Connected	Surface Back Connected	in lb(kg)	
Volts	Ohms at 25 C		with Cover and Studs	without Cover or Studs	with, Glass Covered Studs	with Glass Covered Studs	Net	Ship
C MODELS								
6 12 24 32 48 62.5 110 125 220 250	16 56 225 400 950 1449 4239 5800 950① 950①	2 N.O. 2 N.C. 1 1 1 1	12HMA111A7 A6 A5 A13 A4 A3 A12 A2 A11 A1	12HMA111B7 B6 B5 B13 B4 B3 B12 B2 B11 B1	12HMA124A5 A4	12HMA125A5 A4 A2	1(0.5)	2(0.9)
C MODELS-6	0 Hertz							,
120 240	345 1410	Same	12HMA111A9 A8	12HMA111B9 B8	12HMA124A9	12HMA125A9	1(0.5)	2(0.9)
C MODELS—5	0 Hertz							
120 240	517 2082	Same	12HMA111A19 A18	12HMA111B19 B18	12HMA124A19	12HMA125A19	1(0.5)	2(0.9)

① Uses 3300 ohm external resistor for 220 volt; 3300 ohm for 250 volt.

BURDENS

The burdens for the dc coils are shown in the Selection Guide. The ac burdens are shown in the following table.

	Ac Coils—Century Series										
COIL RATING		COIL RATING R _{DC} ± 10%		х _ю ±10%	Z _{DO}	R _{PU} ±5%	X _{PU}	Z _{PU} ±5%			
VOLTS	нz	± 10%	R _∞ ±10%	±10%	± 10%	±5%	±5%	±3%			
120	60	345	503	964	1087	1389	1534	2069			
240	60	1410	2962	3800	4818	5923	5166	7859			
120	50	517	595	1031	1190	1567	1838	2415			
240	50	2082	2687	4652	5372	7086	8289	10905			

R_{DC}—Dc resistance
R_{DO}—Ac resistance with armature not picked up
X_{DO}—Inductive reactance with armature not picked up
Z_{DO}—Impedance with armature not picked up

R_{PU}—Ac resistance with armature picked up

X_{PU}-Inductive reactance with armature picked up

Z_{PU}-Impedance with armature picked up

HMA

Hinged-armature Auxiliary Relays

GE Protective Relays

DESCRIPTION

The Type HMA relay is a general purpose, hinged armature, self resetting relay. It is housed in a molded TEXTOLITE case for surface mounting, and can be supplied either front or back connected. Back connected models are supplied with a removable front cover, whereas front connected models are supplied without cover or rear studs.

APPLICATION

The HMA relay is a high speed auxiliary relay designed for use with high speed circuit breaker. The pick-up time at rated voltage is approximately 2 cycles (on a 60 Hertz basis). Relays for dc applications are adjusted to pick up at 60 percent of their rating when cold and 80 percent when hot. Relays for ac application are adjusted to pick up at 80 percent of their rating.

The HMA11A is a back connected relay supplied with cover. The HMA11B is similar except it is front connected and is supplied without cover. The HMA24A is similar to the HMA11A except it is made for semi-flush mounting with a glass cover.

For Ac and Dc Auxiliary Functions

The HMA25A is similar to the HMA24A except it is surface mounted, back connected with glass cover.

RATING

The current closing or momentary rating of the contact is 30 amperes for one minute. The current carrying or steady-state rating is 12 amperes.

The interrupting ratings for the various voltages are as follows:

Contact Circuit		Nonin	ductive	Inductive		
Volts	Freq.	Single	Double	Single	Double	
	or	Break	Break	Break	Break	
	Hz	Amp	Amp	Amp	Amp	
6-32	Dc	15	30	6	12	
48		10	20	3	6	
62.5		5	10	1.5	3	
110		1.5	3	0.6	1.2	
125		1.5	3	0.6	1.2	
220		0.3	0.5	0.1	0.3	
250		0.3	0.5	0.1	0.3	
120	60	20	30	15	15	
240		13	25	10	10	
120	50	20	30	15	15	
240		13	25	10	10	

(Photo 8011265)

Fig. 1. Type HMA11A back-connected relay with cover

BURDENS

The burdens for dc coils are shown in the Selection Guide. The ac burdens are shown in the following table.

	Ac Coils										
COIL RATING		R _{DC}	Rpo	X _{DO}	Z _{DO}	R _{PU}	X _{PU}	Z _{PU}			
VOLTS	HZ	± 10%	±10%	± 10%	±10%	±5%	±5%	±5%			
115	60	330	440	864	975	1215	1342	1815			
230	60	1300	2580	3310	4180	5160	4500	6900			
460	60	5100	7040	13825	15600	19440	21475	29040			
115	50	380	503	871	1006	1323	1552	2029			
230	50	1500	2010	3480	4025	5300	6200	8120			

R_{DC}-Dc Resistance

R_{DO}—Ac resistance with armature not picked up.

 $\mathbf{X}_{\mathbf{DO}}$ --Inductive reactance with armature not picked up

Z_{DO}-Impedance with armature not picked up

R_{PU}—Ac resistance with armature picked up

X_{PU}—Inductive reactance with armature picked up

 Z_{PU} -Impedance with armature picked up

Dimensions	Section 16
How to Order	. Section 1
Instruction Books	. Section 17
Target and Contact Data	. Section 16
Relay Standards	Section 16

Hinged-armature Auxiliary Relays

GE Protective Relays

SELECTION GUIDE—Approximately 35 Milliseconds Pickup

Coil Rating				Model Number					Approx Wt in lb (kg)	
		Dc Ohms	Contact	Back Connected	Front Connected	Semi-flush Mtg. Back Connected	Surface Mtg. Back Connected			
Dc	Ac	Onina	Comde	with Cover	without Cover	with Glass Cover	with Glass Cover	Net	Ship	
c MOI	DELS	gw. ye'r a								
.6		15.3	2 N.O.	12HMA11A21	12HMA11B1	12HMA24A4				
12 24 32		60 230	2 N.C.	A22 A23 A24	B2 B3 B4		12HMA25A4		İ .	
		440	1.35	A24 .	· B4					
48 62.5 125		1000 1450		A25 A53 A26	B5 B25	A5	A3	1(0.5)	2(0.9	
125 250		5660 930①		A26	86 819	A2			1. 14,4	
	DELS—6			A47	119			F	Ь	
C MOI	DEF2-0	U MZ							. 47	
	115 125		_	12HMA11A31 A54	12HMA11B11 B27	12HMA24A1@	12HMA25A1			
• • • .	208 230		Same	A48 A32	B12			1(0.5)	2(0.9)	
C MOI	DELS5			7.02	512				3 -	
				· · · · · · · · · · · · · · · · · · ·		T	,	1	r	
	115			12HMA11A41	12HMA11816 B26	12HMA24A3②		1(0.5)	2(0.9	
	230		Same	A42	B17	121111124700] '("")	-(0.7	

① Uses 3300 ohm external resistor. ② 120 VAC.

NGA

Auxiliary Relays

GE Protective Relays

DESCRIPTION

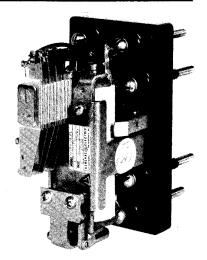
The Type NGA15 is the general designation for a family of telephone-type dc auxiliary relays mounted in a small molded case similar to Type HGA relays. These auxiliary relays are available with several different contact arrangements and operating times. All models are continuously rated. Some have a surge limiting diode circuit for the operating coil as noted in the Selection Guide.

APPLICATION

The NGA15U, 15AG and 15AK are general purpose auxiliary relays. They include a diode combination in parallel with the coil circuit to limit the magnitude of the voltage surges that can be developed when the coil circuit is interrupted. Such an arrangement makes these relays suitable for application in control and relaying circuits where blocking rectifiers are used and supplied from the same dc source as the relay.

The NGA15J is a long-time delay relay for pickup and dropout but does not include a surge limiting diode circuit.

The NGA15AA, 15AH and 15AJ relays were specifically designed to initiate automatic reclosing (RI) in a protective relay scheme. These relays are surge limited and may be used in many other applications.


The NGA15Q and 15X are general purpose high-speed auxiliary relays and are not surge limited.

Ratings

The NGA15 relays listed include the necessary resistors for the coil circuits where needed. These resistors are usually mounted inside the relay case. For some of the continuously rated models, an external resistor is required and these models are identified by "①".

VOLTAGE RATING

The NGA relays have been designed and assembled with components to give a pick-up of 80 percent or less of rated voltage and to give the required operating times at rated voltage. The operating voltage range is 80 to 112 percent of nominal dc rating.

(Photo 8043227)

Fig. 1. Type NGA15 auxiliary back connected (cover removed)

Contact Rating

The relay contacts will close and carry 30 amperes dc momentarily for tripping duty at control voltages of 250 volts dc or less. These contacts will carry 3 amperes continuously and have an interrupting rating as given in Table 1.

TABLE 1 Interrupting Ratings

Volts	Amps Inductive①	Amps Non-Inductive
48 v dc	1.0	3.0
125 v dc	0.5	1.5
250 v dc	0.25	0.75
115 v, 60 Hz	0.75	2.0
230 v, 60 Hz	0.5	1.0

¹ Inductance of average trip coil

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	

Auxiliary Relays

GE Protective Relays

SELECTION GUIDE

Continuous	Pick-up	Drop-out Time		Number			Approx. Wt	
Dc Rating (Volts)	Time (Milliseconds)	Time (Milliseconds)			Contact Arrangement	Case Size	Net	(kg) Shi _l
RGE LIMITE	D							
110 125 220 250	8	8	12NGA15U4 ^① U2 ^① U3 ^① U5 ^①		<u>וֹ וֹ וֹ</u>		3,0	4 (1.8
48 125 250	8	8	12NGA15AK3① AK2① AK1①	12NGA15AG2① AG1①	የ የ የ የ	Molded ③	(1.4)	(1.
48 125 220 250	8	32	12NGA 15AK6 AK4 AK7 AK5	12NGA15AG4 AG3	₹ ; ; *		2 (0.9)	3 (1.4
48 125 250	16	116-167	12NGA15AH3 AH1 AH2①	12NGA15AA3 AA4①	<u>֚֚֚֚֓֞֞֞</u> ֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֓֡֡֓֓֡֡			
125	16	116-167	12NGA15AJ1①				3 (1.4)	(1.
75 125 125 125 125 125 125 250	50 8 28-38 50-55 80-120 90-110 50-55	250 100 220-300 — 60-90 60	12NGA15A28 A21 A34 A33 A30 A32	12NGA15L6 L5 	* ; ; ; *		(0.9)	3 (1.
OT SURGE LI	MITED							
125 220 250	4	4	12NGA15Q5① Q6① Q4①	12NGA15X2①		Molded	3 (1.4)	4 (1.
48 125 250	60-70	16	12NGA 15J6 J5 J4		* 1 1 1	3	2 (0.9)	3 (1.

① Model number includes external resistor. ② Add suffix "F" for semi-flush mounting with glass window cover.

³ Molded case construction similar to the Type HGA.

HSA11

Multi-contact Hand Reset Auxiliary Relays

GE Protective Relays

APPLICATION

The type HSA high-speed multi-contact, auxiliary relays are applicable where it is desired that a number of operations be performed simultaneously from the operation of a single relay.

Typical functions that can be performed by these relays are:

- 1. Trip and lock out the main circuit breaker of a system.
- 2. Trip station auxiliary breakers.
- 3. Trip main or auxiliary field breakers.
- 4. Trip and lock out all breakers on a bus.

Perhaps the most important use of the HSA relay is as an auxiliary used in conjunction with differential relays for bus, transformer, line or rotating machine protection.

CONSTRUCTION

The HSA multi-contact, auxiliary relays are built with many parts common to the type SBM control switches.

The mechanical target on the escutcheon plate assembly indicates the position of the relay. The black target indicates the reset position and the orange target, the tripped position. To reset the relay after it has been tripped, the handle is turned clockwise as indicated by the arrow on the escutcheon plate.

Since the HSA relay is similar to the SBM switch, it is available with a shaft long enough to allow it to be mounted on panels with thickness up to ½ inch.

OPERATION

The HSA11 relay is available with 9, 13 or 19 main electrically separate contacts. In addition, there are 2 normally closed contacts that are wired for opening the operating coil circuit. See Figure 1.

The operating shaft is held in reset position by a positive roller latch which is especially constructed to resist shock and vibration. The latch is released through the action of a plunger device actuated by the relay operating coil. All HSA relays are made so that they should not normally be

tripped manually; however, manual tripping can be accomplished through use of an escutcheon knockout (and pre-drilled hole in panel) which provides access to a screwdriver-operated tripping device. The time required to trip the relay, from the instant of energization of the coil to the closing of the contacts, is per HSA Relay Operating Characteristics (Figures 2 & 3), slightly less for opening of contacts.

TARGET DROPPING

Universal targets in series with HSA trip coils increase HSA trip time. A typical increase in trip time for a single 0.2 ampere target and an HSA with a 125 VDC trip coil is 1.3 milliseconds.

Table 1 shows the maximum number and type of universal targets that can be dropped by the current pulse of HSA trip coils.

Table 1 - Target Dropping

HSA Coil	Coil	Number of Parallel Targets Dropped			
Group	Voltage	0.2 amp	0.6 amp	2.0 amp	
1 2 2 3 3	48 VDC 110 VDC 125 VDC 220 VDC 250 VDC	6 6 6 6	6 6 6 3 4	3 2 2 1	

NOTE: A minimum of two parallel 0.2 ampere targets is recommended to assure tripping of 48 VDC HSA relays.

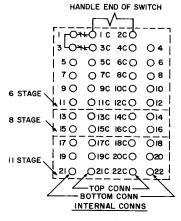


Fig. 1. HSA11 Relay Contacts.

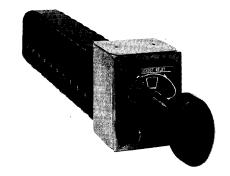


Fig. 4. Type HSA11 Auxiliary Relay

SEISMIC CAPABILITY

The seismic capability of HSA N.O. (Normally Open) and N.C. (Normally Closed) contacts are given in Table 2.

Table 2 - HSA Seismic Capability

Seismic Capability in g's ZPA						
HSA	Reset	HSA Tripped				
N.O. 6.0	N.C. 4.0	N.O. 6.0	N.C. 6.0			

Dimensions	Section 16
How to Order	Section 1
Instruction Books	
Target and Contact Data	Section 16
Relay Standards	

HSA11

Multi-contact Hand Reset Auxiliary Relays

GE Protective Relays

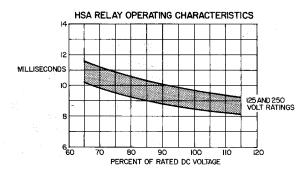


Fig. 2. Operating Characteristics, 8- and 11-stage HSA Relays

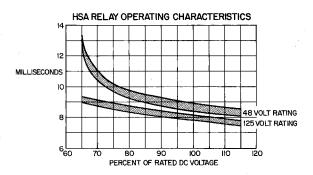


Fig. 3. Operating Characteristics, 6-stage HSA Relays.

SERVICE TEMPERATURE

The HSA will operate over an ambient temperature range of -20°C to $+55^{\circ}\text{C}$ and will not be damaged by storage ambients of -40°C to $+65^{\circ}\text{C}$.

DIELECTRIC CAPABILITY

HSA relays are rated 600 volts in accordance with the Dielectric Test Section of Relay Standard ANSI/IEEE C37.90-1978.

TRIP COIL RATINGS

The three trip coils available for HSA relays have multiple voltage ratings as shown in Table 3. To obtain maximum tripping speed, the coils are rated for intermittent duty only.

Table 3 - Trip Coil Voltage Ratings

Intermittent " Rating (Volts)	Frequency (Hz)	Operating Range (Volts)	Coil Group
48 110 125 220 250	DC DC DC	32- 55 70-145 70-145 140-290 140-290	1 2 2 3 3
69 110 120 220 240	50/60 50/60 50/60 50/60 50/60	45- 80 70-140 70-140 140-280 140-280	1 2 2 3 3

CAUTION: Do not hold the reset handle in the reset position if the HSA will not reset. Failure to reset indicates that the trip coil is energized. Holding the reset handle in the reset position with the trip coil energized at rated voltage will cause rapid coil heating and possible insulation damage.

CONTACT RATINGS

The current-closing ratings of the contacts is 30 amperes for voltages not exceeding 600 volts. The contacts have a current carrying capacity of 20 amperes continuously. The interrupting ability of the contacts varies with the inductance of the circuit. The values (in amperes) given in Table 4 for dc inductive circuits, are based on the average trip coil.

BURDENS

The burdens for the type HSA relays are given in Table 5 and Table 6.

Table 4 - Contact Interrupting Ratings

Circuit	Amps Non-inductive		Amps Inductive (L/R04)	
Volts	Single	Two in	Single	Two in
	Contact	Series	Contact	Series
48 DC	10	50	6	30
125 DC	5	22	4	13
250 DC	1.5	4	1.4	3.5
120 AC	50	50	50	50
240 AC	50	50	25	50

Table 5 - DC Burden Data for HSA Relays

Coil	Volts	Coil Resistance	DC Inrush
Group		(ohms at 25°C±10%)	Current (amps)
1	48	·2.85	17
2	110	11.8	12
2	125	11.8	13
3	220	47.5	5
3	250	47.5	5

Table 6 - AC Burdens

AC Burdens						
Coil Group	Valts	Frequency	Z (ohms)	Voltage Lead Angle		
1	69	60	10	30		
2	110	60	11	29		
2	120	60	11	29		
3	220	60	45	28		
3	240	60	45	28		
1	69	50	10	27		
2	110	50	11	24		
2	120	50	11	24		
3	220	50	45	23		
3	240	50	45	23		

HSA11

Multi-contact Hand Reset Auxiliary Relays

GE Protective Relays

SELECTION GUIDE

Contact A Reset (Late	Arrangement ched) Position		Model Number		Approx Wt in lb (kg)	
Contact Numbers Norm. Closed	Contact Numbers Norm. Open	48 Volt Dc 69 Volt Ac 50/60 Hz Ac	110/125 Volt Dc 110/120 Volt Ac 50/60 Hz Ac	220/250 Dc 220/240 Ac 50/60 Hz Ac	Net	Ship
CONTACT (Plus 2 Co	ontacts in Coil Circuit)					
None 4 4-5 4-6 4-7 4-8 4-9 4-10 4-11 4-12	4-12 5-12 6-12 7-12 8-12 9-12 10-12 11-12 12 None	12HSA11A100 A101 A102 A103 A104 A105 A106 A107 A108 A109	12HSA11A110 A111 A112 A113 A114 A115 A116 A117 A118 A119	12HSA11A120 A121 A122 A123 A124 A125 A126 A127 A128 A129	3.1 (1.4)	5 (2.3)
3 CONTACT (Plus 2 C	Contacts in Coil Circuit)	*				100
None 4 4-5 4-6 4-7 4-8 4-9 4-10 4-11 4-12 4-13 4-14 4-15	4-16 5-16 6-16 7-16 8-16 9-16 10-16 11-16 12-16 13-16 14-16 15-16 16 None	12HSA 11B200 B201 B202 B203 B204 B205 B206 B207 B208 B209 B210 B2110 B211 B2112 B213	12HSA11B220 B221 B222 B223 B224 B225 B226 B227 B228 B227 B230 B231 B232 B232 B233	12HSA11B240 B241 B242 B243 B244 B245 B246 B247 B248 B249 B250 B251 B252	3.5 (1.6)	5.4 (2.4)
9 CONTACT (Plus 2 C	Contacts in Coil Circuit)	1				
None 4 4-5 4-6 4-7 4-8 4-9 4-10 4-11 4-12 4-13 4-14 4-15 4-16 4-17 4-18 4-19 4-20 4-21	4-22 5-22 6-22 7-22 8-22 9-22 10-22 11-22 12-22 13-22 14-22 15-22 16-22 17-22 18-22 19-22 20-22 21-22 22 None	12HSA11C300 C301 C302 C303 C304 C305 C306 C307 C308 C309 C310 C311 C312 C313 C314 C315 C316 C317 C318 C319	12HSA11C320 C321 C322 C323 C324 C325 C326 C327 C328 C329 C330 C331 C331 C332 C333 C334 C335 C337 C338 C337	12HSA11C340 C341 C342 C343 C344 C345 C346 C347 C348 C349 C350 C351 C352 C353 C355 C355 C355 C355 C355	4 (1.8)	(2.7)

SECTION: 7

Reclosing Relays

HGA18	8 Single-shot Recloser	1
NI R	Multi-shot Recloser	3

HGA18

Single-shot Reclosing Relays

GE Protective Relays

DESCRIPTION

The Type HGA18 is a self-resetting, "single-shot" reclosing relay which initiates immediate reclosure of a power circuit breaker. The HGA18 consists of an HGA unit and an R-C circuit mounted in a drawout case. The HGA unit coil consists of an operating winding and a holding winding which are connected in separate circuits (see Figures 2 and 3). The HGA18 is available in either ac or dc voltage rating. Both versions come equipped with a target in the output contact circuit. The target coil may be bypassed by means of an internal jumper if it is not needed.

APPLICATION

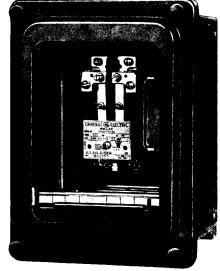
The HGA18 relays are designed for use where a single immediate reclosure of circuit breakers is desired. In the event that the breaker reopens after reclosure within the relay reset time, the relay will cause the breaker to lock-out. However, if the breaker remains closed for at least the relay reset time, the relay will reset and be ready for another reclosing operation. Power to operate the relay is obtained from a fully charged capacitor which is caused to discharge into the relay coil when a "b" switch on the breaker closes or a reclose initiating (RI) contact closes.

The HGA18 is well suited for use where the service does not justify subsequent time reclosures, such as provided by the SLR relay. Typical applications include remote controlled stations, attended stations where the operator's presence is only part time, unattended stations, electrically operated pole-mounted breakers, and outdoor switch houses.

SELECTION GUIDE 2 N.O. Contacts

Rat	ed Voltage	Operating	Reset	Target	Model Number		Case	Appro in lbs	x. Wt. i. (kg)
DC	25-60 Hz ①	Range (Volts)	Time (Secs)	Rating (Amps)	Standard	Shock Resistant	Size	Net	Ship
48 125 125 250		39-54 100-140 100-140 200-281	15	1.0 1.0 0.2 1.0	12HGA18M3A@ M4A 	12HGA18M2A@ M5A M1A	S-1	8 (3.6)	15 (6.8)
	115	92-129		0.2	NIA®		5-2	9 (4.1)	17 (7.7)

- ① Ac model includes external rectifier with mounting bracket.
- 2 These models include external capacitors with mounting brackets.


FACTORS IN APPLICATION

There are certain requirements that should be understood in order to take full advantage of immediate reclosing.

- (a) Control Switch—An extra contact should be provided on the control switch to prevent the HGA18 relay from reclosing the breaker after it has been tripped manually by the control switch.
- (b) Undervoltage Devices—When such devices are on the system, it is necessary to co-ordinate between the HGA18 reset time and and trip time of the undervoltage device
- (c) Closing Relays—Where the Type HGA18 relays are used, it is essential that the breaker mechanisms have closing relays which insure complete closure of the breaker even though the auxiliary switch on the breaker mechanism opens before closure is complete.

Where trip-free closing relays are used, it is necessary that they reset quickly enough to permit immediate reclosure of the breaker

- (d) Latch-checking Switches—In order to insure successful operations of breakers reclosed by Type HGA18 relays, it is necessary to have a latch-checking switch on all trip-free solenoid mechanisms.
- (e) Holding Coil Circuit—This circuit must be complete no later than the instant when the operating coil becomes energized, and must remain complete until reclosure has progressed to the point where it will carry through even if the reclosing relay opens the closing circuit.

(Photo 8007533)

Fig. 1. Type HGA18 reclosing relay

- (f) Overcurrent Relays—The protective relays that trip the breaker obviously must open their contacts before the breaker recloses; otherwise the breaker may even trip a second time though the fault has cleared.
- (g) Power Circuit Breakers—the derating factors applying to the interrupting rating of breakers should be checked for all applications of the HGA18 relays.

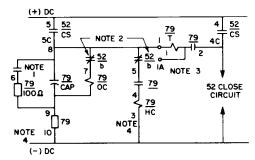
CONTACTS

Current-closing rating of the contacts is 30 amperes for voltages not exceeding 250 volts. The contacts have a current carrying rating of 12 amperes continuously or 30 amperes for one minute.

Interrupting ratings (non-inductive circuits) for various voltages are given in the table below:

			Α	λ C		
Volts	24	48	125	250	115	230
Amps	3	1.5	0.6	0.25	20	10

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16


HGA18

Single-shot Reclosing Relays

GE Protective Relays

CLOSING TIME

The time for the closing of the HGA18 contacts is approximately one cycle on a 60-Hertz basis. This includes the total operating time of the HGA18 relay, from the instant the "b" switch closes until the closing impulse is given to the closing relay. The closing time of the various breakers, of course, depends on several factors, such as the type of mechanism and the type and size of the breaker.

52CS - CONTROL SWITCH 79 - HGA18M

OC - OPERATE COIL HC - HOLDING COIL T - TARGET CAP - CAPACITOR

NOTE 1: DISABLING CONTACT, TO BE SUPPLIED BY USER.

NOTE 2: TWO BREAKER b SWITCHES ARE NECESSARY TO AVOID A

SNEAK CIRCUIT. WHEN ONLY ONE b SWITCH IS

AVAILABLE, SEE DRAWING 0285A6287

NOTE 3: IF TARGET OPERATION IS NOT DESIRED, SHIFT INT.

NOTE 3: IF TARGET OPERATION IS NOT DESIRED, SHIFT IN L.
JUMPER FROM 1A TO 1.

NOTE 4: TERMINALS 3 AND 10 MUST BE OF SAME D-C POLARITY.

Fig. 4. Typical external connection of Type HGA18M relay where two 52/b contacts are available

					SWITCH	I
			CLOSE	NOR AFT CLOSE	NCR AFT TRIP	TRIP
1	2	1				X
OН	owo	2	ĺ			X
3	4	3		X	X	
	ЭΟЮ	4	X			
5	6	5	X	X		
OК	owo	6	X	X		

Fig. 5. Contact arrangement of breaker control switch used in typical scheme.

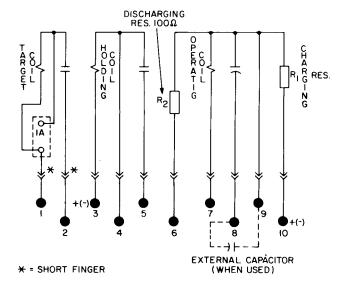


Fig. 2. Internal connection diagram for Type HGA18M relay

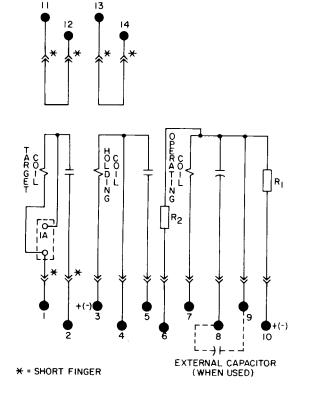


Fig. 3. Internal connection diagram for Type HGA18N relay

NLR

Reclosing Relays

GE Protective Relays

DESCRIPTION

The Type NLR21 is a multi-shot reclosing relay designed to automatically reclose a circuit breaker which has been tripped by a protective relay. The relays have improved surge withstand capability compared to earlier models. Included is a dc operated timing circuit with solid-state components which provides an extremely stable timing function, a heavy-duty stepping switch, auxiliary units, time-adjusting rheostat and adjustment cams to select the reclosing intervals.

APPLICATION

The NLR multi-shot reclosing relay is designed for use in two major applications of power systems:

- Distribution area on radial circuits (all listed NLR21's except NLR21E);
- Transmission lines where generation is usually present behind both line terminals (NLR21E).

The NLR21A, and -21B are, respectively, dc and ac operated relays recommended for distribution circuits and provide up to three adjustable reclosures. The initial reclosure may be instantaneous or delayed, followed by up to two delayed reclosures. The NLR21C and -21D are respectively dc and ac operated relays which provide up to four reclosures. The initial reclosure must be instantaneous followed by up to three delayed adjustable reclosures.

The NLR21E relay is recommended for transmission line applications where selective reclosing is usually required. The relay provides an instantaneous initial reclosure, initiated only by an auxiliary relay associated with high-speed primary line protection, and up to three delayed reclosures which will follow any breaker trip by line relays, primary or backup. An auxiliary unit is included which stops the timer when each delayed reclosure position is reached to wait for the synchronism check relay to complete the reclosing circuit.

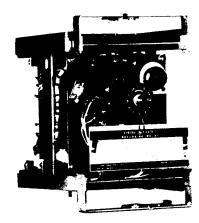
The NLR21G is intended for applications where it may be desirable to block reclosing and initiate fast lockout of the NLR relay if the breaker is tripped by supervisory, by a differential relay, or by a breaker failure backup scheme. Operation of an included auxiliary unit by means of an external contact will block reclosing and cause the stepping switch to step immediately into the lockout position.

The NLR21U and -21M provide up to three and four reclosures respectively. However, they are rated for dual dc operation at 48 or 125 volts.

The NLR21P and -21T are, respectively, ac and dc relays which can be used when a separate adjustable time delay of four to 24 milliseconds is desired for the initial reclosure.

OPERATION

Reclosing signals are provided at timed intervals by cams of a stepping switch. An adjustable timing circuit normally set to provide a time interval of five seconds, operates the stepping switch one step at the end of each interval. Contacts operated by the adjustable cams provide reclosing signals on any of the first 34 steps. The 35th step is lockout, and the 36th step is reset, which completes the cycle and resets the relay to the starting step. A cam in position zero (which is also step 36) provides an instantaneous reclosure.


A small rheostat is used to provide steptime interval adjustment of 0.5 to 5 seconds. The total timing cycle, from the start of the timer to reset is thus adjustable up to a maximum of three minutes.

Provisions are included for blocking the instantaneous signal. Also, an auxiliary contact operated by an adjustable cam can be used for additional control functions, such as to block automatic tap changing during the reclosing period. A normally open or normally closed contact is available.

The reset selecting link has three postions:

None, Next Close, and Step 2.

None: Resets one step-time interval after lockout if breaker remains closed.

(Photo 122762)

Fig. 1. NLR21E relay withdrawn from case

Next Close: Resets when the next reclosing signal is reached if the breaker is still closed.

Step 2: Resets two step-time interval after any successful reclosure.

FEATURES

Relays listed in the Selection Guide for distribution circuit application include the following features:

A. Coordination With Branch Fuses

In some systems involving multishot reclosing relays, the main feeder is protected by a circuit breaker and the branch feeders by fuses. This means of sectionalizing a system requires that a fault on a branch be cleared initially by the main breaker tripped by a high-speed relay unit. If the fault persists following immediate reclosure, it must be cleared the second time by the branch feeder fuse. To accomplish this, the contacts of the high-speed protective relay must be blocked following the initial trip-out. The NLR relay can be connected to block instantaneous tripping of the breaker after the initial reclosing thus providing time for the branch fuse to clear the fault, rather than the main breaker.

Instantaneous tripping can be reinstated automatically when the NLR relay locks out.

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16

NLR

Reclosing Relays

GE Protective Relays

B. Selective Reclosing

In certain applications it is desirable to utilize the instantaneous reclosure if the circuit breakers are tripped by an instantaneous relay. However, if the circuit breakers are tripped by a time-delay relay, the NLR will by-pass the instantaneous reclosure and will wait for the first delayed reclosure.

APPLICATION CONSIDERATIONS

a. Latch-checking Switches

In order to insure successful operation of a breaker reclosed by an NLR relay adjusted for immediate initial reclosure, it is necessary to use a latch-checking switch on its solenoid mechanism if it is trip-free. This switch completes the closing circuit only after the mechanism latch is properly reset for the reclosure.

b. Control Switches

An extra contact should be provided on the control switch to prevent the NLR from reclosing the breaker after it has been tripped manually by the control switch. If tripped in this manner, the breaker must be reclosed by the control switch in order to restore the automatic reclosing feature.

c. Undervoltage Devices

In order to obtain the advantage of instantaneous reclosure on utilization devices, the undervoltage devices (or equivalent) in their control should not be instantaneous, but should have a dropout delay of one or two seconds.

d. Protective Relays

The protective relays that trip the circuit breaker must open their contacts before the breaker recloses; otherwise the breaker may retrip immediately even though the fault has cleared.

e. Closing Control Circuits

It is essential that the circuit breaker mechanisms use closing circuits which assure complete closure of the breaker, even though the closing circuit is opened at some point before closure is complete.

f. Interrupting Ratings

The derating factor for the interrupting rating of the power circuit breaker should be checked for the proposed reclosing cycle.

CONTACT RATINGS

The relay contacts will make and carry 30 amperes momentarily and carry 1.0 ampere continuously.

The relay contacts will interrupt the currents given in table below:

Volts	Current Inductive①	Current Non-inductive①
48 v dc	1.0	3.0
125 v dc	0.5	1.5
250 v dc	0.25	0.75
115 v dc	0.75	2.0
230 v ac	0.5	1.0

1 Induction of average trip coil.

BURDENS

Volts	Freq.	Res.—Ohms Min.
250	Dc	1500
125	Dc	4 00
48	Dc	70
240	50/60 Hz	1500
120	50/60 Hz	4 00

The resistance values given are the relay resistance when the stepping switch coil is energized for about 8 milliseconds when the switch steps. At other times when the timer is running the relay resistance is approximately 10 times the values given above. When the relay is in reset, it has zero burden. Ac burden is at unity power factor.

The NLR will operate in ambient temperatures of -20 C to 60 C with a max. time variation of 6 percent, and down to -40 C with a maximum variation of 10 percent.

SELECTION GUIDE

Rating				Model Number				Appr	ox Wt
Voltage Freq.		3①			3① Recl.	3① Recl. with	Case Size	lb (kg)	
	Freq.	Reclosures ②	Reclosures ②	Prov. for synch. check	with fast lockout	sep. del. on initial Recl.3	Size	Size Net	Ship
32 48 125 250 48/125	Dc	12NLR21A4A A1A U1A	12NLR21C1A M1A	12NLR21E3A E2A E1A	12NLR21G2A G1A	12NLR21T1A	\$2	14 (6.4)	18 (8.2)
120 208 240	50/60 Hz	B1A B4A B2A	D1A D2A			P1A			

Models with three reclosures may have an instantaneous or a delayed instantaneous initial reclosure. Models with four reclosures have fixed instantaneous initial reclosure.

② For application on distribution circuits.

³ For application on transmission circuits.

SECTION: 8

Synchronizing Relays

IJS	Synchronism Check	1
SLJ	Static Synchronism Check	3

Synchronism-check Relays

GE Protective Relays

When the Two Sources are Already Interconnected

DESCRIPTION

The Type IJS is an induction disk synchronism check relay that has two shaded pole U-magnet driving elements acting on opposite sides of a single rotating disk. One operating element drives the disk in the contact closing direction and the other in the restraining or opposite direction. The disk shaft is restrained by a spiral spring, to hold the contacts open when the relay is de-energized. The motion of the disk is retarded by permanent magnets to give a time delay.

APPLICATION

Generally, the Type IJS relay is applicable as a synchronism-check relay to permit closure of a circuit breaker only when two sources connected to it are synchronized elsewhere. It determines that synchronism is being maintained by other interconnections, and then permits closure of the circuit breaker. In such an application, the voltages on either side of an open line breaker may be slightly out of phase with each other because of load flow on the rest of the system. The relay, however, can be calibrated to permit closure of the breaker under these conditions if the voltage and the phase-angle differences are not excessive.

The relay has an adjustable time delay and permits operation only if the phase angle remains less than a definite number of degrees for a selected time. The relay operating torque increases as the phase angle decreases and is a maximum when the two compared voltages are in phase.

On systems where the two sides of a given breaker may or may not be interconnected elsewhere at any given moment when paralleling is desired, the GES or GXS is used for synchronizing when a finite frequency difference exists; and the IJS is used at the same location for synchronism check when the frequency difference is negligible or zero due to the existence of an interconnection elsewhere. In this application, the IJS contacts are connected in parallel with those of the GES or GXS.

Forms of the relay are available with a rated calibration range up to 60 degrees. For settings over 20 degrees, consideration should be given to the resulting generator stresses at the instant of closure through existing system impedances, as in any other situation involving out-of-phase closure.

The IJS51A is the basic synchronismcheck relay and includes a target seal-in unit. IJS52A is similar to the basic IJS51A but without the target seal-in unit.

DEAD LINE OR BUS

In addition to permitting closure of the breaker when the two sources are in permanent synchronism, it is sometimes desirable to permit closure when either section is deenergized or dead.

The IJS52D includes the normal synchronism check induction element. It also includes two telephone-type instantaneous undervoltage units designated as "B" for bus and "L" for line. Depending on the external connections, the telephone-type instantaneous undervoltage units "27B" and "27L" will permit reclosing of the breaker under a variety of system conditions. See Fig. 2-1 to 2-6, Page 9-2.

The IJS52E provides a combination of synchronism-check operation, with a timedelay dead-line- live-bus and/or dead-buslive-line check.

performs It either Οľ both the voltage checking functions (as selected by external switch contacts) by means of internally mounted instantaneous voltage relays which connect both coils of the IJS unit to the bus or line when the voltage on the opposite side of the controlled breaker is 15 percent or less of rated value. The pickup time of the IJS unit at 0 degrees is thus the closing delay for the dead-line- live-bus and/or the live-line- dead-bus checking functions.

The IJS52E performs the synchronismcheck function in the usual manner whenever the voltage on each side of the controlled breaker is at or above 45 percent of rated value. This insures that both of the instantaneous voltage relays will be picked up, and in that position they connect the coil circuits of the IJS unit to the bus and line so that the unit responds to phase relations in the usual

The IJS52F is similar to the IJS52D except it includes an additional telephone-type unit, (25X) to provide three N.O. electrically separate contacts.

The IJS52G is similar to the IJS52E except for the addition of a selector switch. This switch has two positions - in the "down" position the relay will function as hot line-dead bus checking scheme. In the "up" position of this switch the relay functions as a hot bus-dead line checking scheme.

Fig. 1. Typical Type IJS52D Relay (without case)

RATINGS

The operating and restraining coils of the synchronism-check unit are continuously rated. The contact of this unit will make and carry momentarily 30 amperes but it has no interrupting rating. The current-carrying ratings are affected by the selection of the tap on the seal-in coil. See Target Data, Section 16.

For the IJS52D, 52E and 52F the telephone-type voltage relay contacts will make and carry 30 amperes momentarily for normal duty, but the circuit must be opened by a breaker auxiliary switch or other suitable

The telephone-type relays have operating coils rated the same as main unit, and are continuously rated.

BURDENS

The maximum burden for the synchronism-check unit is 12 voltamperes, 4 Watts at 60 Hertz. The burden varies with the phase difference of the two voltages with a minimum at zero degrees to a maximum at 180 degrees.

The burden of each telephone-type undervoltage unit is 13 volt amperes and 8 watts at 115 volts 60 Hertz.

Dimensions	. Section 16
How to Order	. Section 1
Instruction Books	. Section 17
Target and Contact Data	.Section 16
Relay Standards	. Section 16

IJS

Synchronism-check Relays

GE Protective Relays

SELECTION GUIDE

Frequency	Volts	Closing① Angle at	Target Seal-in	Main	Model Number	Case	Approx V	Vt Lb (Kg)
Hertz	Ac	Ac Angle at Rated Volts	Amp	Contacts	Number	Size	Net	Ship
YPE IJS51A—Sy	nchronism Che	ck With Seal-in U	nit			•		
60	115	20° 20/60°	0.2/2	1-N.O.	12IJS51A1A 12IJS51A3A	S-1	13 (5.9)	17 (7.8)
50	115	20/60°	0.2/2	1-N.O.	12IJS51A4A			
YPE IJS52A—Sy	nchronism Che	ck Without Seal-i	n					
60	115 115	20° 20/60°	=	1-N.O.	12IJ\$52A1A 12IJ\$52A7A	S-1	13 (5.9)	17 (7.8)
, ,	230 115	20° 10°	_	1-14.0.	12IJ\$52A8A 12IJ\$52A10A	3-1		
- 50	115	20°		1-N.O.	12IJS52A2A			
YPE IJS52D—Sy	nchronism Che	ck With 2 Instant	aneous Undervo	ltage Units - Bus	and Line			
60	115 115 67	20° 20/60° 20/60°	Ē	1-N.O.	12IJS52D1A 12IJS52D3A 12IJS52D6A	S-1	14 (6.3)	18 (8.1)
50	115	20° 20/60°		1-N.O.	12IJ\$52D2A 12IJ\$52D4A			
YPE IJS52E—Sy	nchronism Che	ck With Time Delo	y Check of Bus	and Line				
60	115	20° 20/60°	=	1-N.O.	12IJS52E1A 12IJS52E3A	S-1	14 (6.3)	18 (8.1)
50	115	20° 20/60°	=	1-N.O.	12IJS52E2A 12IJS52E4A			
YPE IJS52G—Si	milar To IJS52E	Except With Sele	ctor Toggle Swit	ch				
60 60	115	20° 20/60°		1-N.O.	12IJS52G1A 12IJS52G3A	S -1	14 (6.3)	18 (8.1)
YPE IJS52F—Sin	nilar To IJS52D	Except With Add	ed Telephone A	uxiliary Relay				
60	115	20°	Auxiliary Volts dc 125	Auxiliary 3-N.O.	12IJS52F1A	M-2	21 (9.6)	27 (12.2

① For relays with 20/60-degree range, specify closing-angle setting desired, when ordering. If not specified on order, factory setting will be 40°.

CONNECTION DIAGRAM

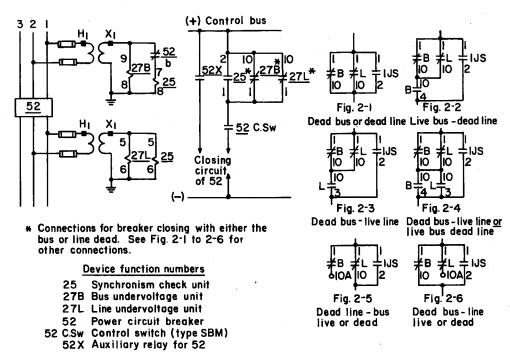


Fig. 2. Typical elementary diagram of external connections of Type IJS52D relay (Ref. 0264B0496)

SLJ

Static Synchronism Check Relays

GE Protective Relays

INTRODUCTION

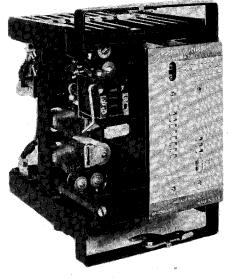
The Type SLJ21A is a static synchronism check relay which is designed to permit closing of a breaker only if the angle between the voltages on the line and bus sides of the breaker is less than a set angle for a set period of time. Also included are two voltage measuring circuits to check line and bus voltage conditions. The relay is mounted in a size S2 drawout case.

APPLICATION

The SLJ21A static relay is designed to perform the function of synchronism check before allowing a circuit breaker to be closed. The maximum angle between the parts of a system for which closing will be permitted by the relay is referred to as the closing angle and is adjustable over a range of 10 to 60 degrees.

The relay is a single-phase device that receives single-phase voltage from the same phase on each side of the breaker, or the equivalent in the case where a delta-wye power transformer is interposed between the two sources of voltage. It is the angle between these two voltages that forms the basis of synchronism check. Refer to typical external connections, Figure 2.

The relay is designed to be used primarily in those applications where the parts of the system to be joined are interconnected at other points on the system. Even though in synchronism, there may be an angular difference in the voltages existing on either side of the breaker as a result of load flow throughout the interconnected system. It may be desirable to permit closing of the breaker even though an angular difference exists, provided, of course, the angular difference is not great enough to be detrimental to the system or connected equipment. Each application should be checked on an individual basis to determine the maximum angle for which closing can be permitted. Once this angle has been determined, the relay should be set accordingly. If desired, some time delay may be added to insure that the system is stable and that synchronism really exists.


The SLJ21A relay may be used in applications requiring a synchronism check high-speed function for supervision of fast power transfer schemes, for any application requiring fast pickup and dropout, or for any general application where synchronism check is required.

DESCRIPTION

The SLJ21A synchronism check relay uses a block-block type measuring scheme to determine if the angle between the voltages on each side of an open breaker is within a set limit for a set amount of time. This angle is defined as the closing angle and is adjustable by timer TL-1 to permit closure from 10 to 60 electrical degrees. The pick up delay time is provided via timer TL-2 and is adjustable from 20 milliseconds to 20 seconds. The output telephone relay (25) associated with the synchronism check function has a pickup time of approximately 4-6 milliseconds and a dropout time of 16 milliseconds when measured from the moment of coil energization and de-energization, respectively. To these times must be added the respective pickup and dropout times of timers TL-1 and TL-2. Thus, the minimum overall operate time for the synchronism check function is approximately 30 milliseconds, whereas the overall dropout time is approximately 25 milliseconds. The (25) telephone unit is provided with two normally open contacts, one of which has a series-connected target.

Two undervoltage functions, one for monitoring the line voltage and the other for monitoring the bus voltage, operate through common logic and with a common telephone relay (27) to provide various combinations of dead line or dead bus operation. Dropout of each function is separately and continuously adjustable over the range of 10-120 volts.

A contact converter (CC-1) is provided for external control of the synchronism check and/or both voltage functions.

(Photo 8043744)
Fig. 1. Type SLJ21A Relay
(out of case)

DEAD-LINE OR DEAD-BUS

In order for the SLJ synchronism check function to provide an output, there must be a voltage present on both sides of the breaker, and the phase angle between these voltages must be within the closing angle setting of the relay. For applications where dead line and/or dead bus operation is required, undervoltage detectors are used to bypass the synchronism check device. These undervoltage devices are included as an integral part of the relay.

Dimensions	Section 16
How to Order	
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	

SLJ

Static Synchronism Check Relays

GE Protective Relays

RATINGS

Operating Range

The SLJ21A is designed to operate over an ambient temperature range of -20° to $+55^{\circ}$ C. The phase angle which is set at 25° C and will vary no more than ± 2 degrees over a temperature range of 0° to 55° C. An additional -2 degrees variation may occur for temperature between 0° and -20° C. The time-delay timer will vary no more than ± 2 percent over the full rated temperature range.

These relays have been designed for continuous operation in ambient temperatures between -20°C and $+55^{\circ}\text{C}$ per ANSI Standard C37.90. In addition, the relay is designed to operate correctly and not malfunction nor be damaged in an ambient temperature up to $+65^{\circ}\text{C}$.

CONTACT RATINGS

The contacts of the telephone type units will make and carry 30 amperes momentarily and will carry 3 amperes continuously. One contact of the synchronism check unit has a series target coil which (depending on tap setting) may limit the current. The contact interrupting ratings are listed in Table 1.

Seismic

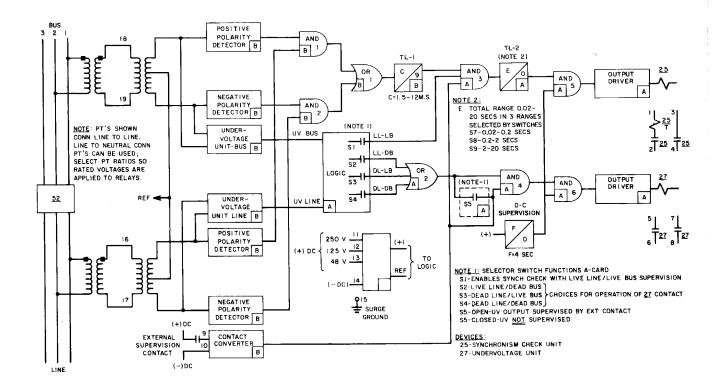
The SLJ21A relay has been tested per IEEE Standard 501-1978. The output contacts have a rating of 6G ZPA.

Surge Protection

The SLJ21A was designed to meet ANSI-C37.90a-1974, IEEE Standard 472-1974 SWC test. It also meets the GE "Fast Transient" test and the GE "RFI" test.

TABLE 1—Telephone Relay Interrupting Ratings

Volts	Interrupt Amps.				
¥0/13	*Inductive	Non-Inductive			
48dc	1.0				
125dc	0.5	1.5			
250dc	0.25	0.75			
115V-60 Hz	0.75	2.0			
230V-60 Hz	0.5	1.0			


TABLE 2—Typical Burdens

• • •				
Ac Burden	Watts		Va	
Bus Circuit	1.0	1.0		
Line Circuit	1.0	1.0		
Dc Burden	48V	125V	250V	
Watts	5.5	12.5	22	

SELECTION GUIDE

Model	Frequency	Volts	Volts	Closing	Target	Operating Time	Case	Approx V	Vt. lb (Kg)
Number	Hertz	Ac	Dc	Angle	Amps	Operating time	Size	Net	Ship
12SLJ21A1A	50/60	120	48 125 250	10° - 60°	0.6/2	20 Milliseconds to 20 Seconds	S2	14 (6.4)	17 (7.7)

CONNECTION DIAGRAM

(Dwg. 0138B7608)

Fig. 2. Typical External Connections & Logic Diagram for SLJ21A

SECTION: 9

Generator Protection Relays

CEH	Loss-of-excitation	1
GGP	Power Directional (3 phase)	3
CEX5	7, GSY51 Angle Impendance	4
IFCS	Time Overcurrent with Voltage Control	6
PJG	Machine Field Ground Detector	8
IFCV	Time Overcurrent with Voltage Restraint	9
SGC	Static Negative Sequence Time Overcurrent	11

CEH

Loss-of-Excitation Relays

GE Protective Relays

For High-speed Detection of Loss of Excitation of Synchronous Generators

APPLICATION

The type CEH relays are used for the detection of the loss of excitation of synchronous generators, and to automatically remove the generator from service. Loss of excitation can be damaging to the machine, and/or detrimental to the operation of the system. It is recommended that loss-of-excitation protection be considered for all synchronous generators.

Fig. 3 (see page 10-2) illustrates a unit type generator connected to a power system with an offset mho distance relay at its terminals set as indicated on the R-X diagram. The relay is set with an offset equal to one half the direct axis transient reactance, and a diameter equal to the direct axis synchronous reactance of the generator. Typical impedance loci, as seen by the relay when the excitation is lost as a result of a short circuit across the field windings, are also shown in Fig. 3. Curve A represents loss of excitation from full load conditions. This locus terminates in a region near the negative X axis at a point located approximately at the average of the direct and quadrature axis sub-transient impedances of the generator. In the case of no load, or very light load prior to the loss of excitation, the impedance seen by the relay terminates in an area near the negative X axis as shown by point C. The impedance seen in this case is approximately equal to the average of the direct

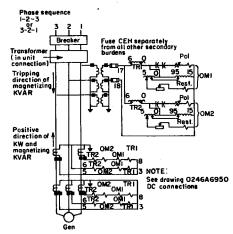


Fig. 1. External ac connections for Type CEH52A relay using wye connected PT's.

and quadrature synchronous impedances of the generator. Curve B applies for some moderate condition between full and no load. Thus, the characteristic of Fig. 3 will suffice to detect a loss of excitation from any initial loading. Since a characteristic with settings as illustrated in Fig. 3 is required to detect loss of excitation, it should be ascertained that such an application is secure against undesired operation on stable system swings resulting from system disturbances.

Fig. 4 (see page 10-2) illustrates typical impedance loci as viewed by two offset mho

Fig. 2. Type CEH51 relay withdrawn from case.

relays located at the generator terminals for different system conditions after a nearby fault is cleared. Two mho characteristics are shown; the larger one with settings as shown in Fig. 3, and the smaller one set with a diameter equal to the impedance of 1.0 per unit on the machine base. Referring to Fig. 3, a loss of excitation will be detected

SELECTION GUIDE

	Rating				Auxiliary Diameter		Offset (Ohms)		T. & S.I.	Time	Model	Case	Approx Wt in Lbs (Kg)	
Volt	Frequency	Current	Unit Voltage	(Ol	ıms)①			Rat. (Amps)	Delay (Secs.)	Number	Size		<u> </u>	
YOU	(Hz)	(Amps)		Min	Max	Min	Max		,,			Net	Ship	
INGLE PI	IASE—1 MH	O UNIT										I		
115	60	5	24/48 48/125 125/250	5	50	0	4	0.2/2.0		12CEH51A6A A4A A1A	M-1	24	35	
115	50	5	110/220 125/250					,		A5A A3A		(10.9)	(15.9	
INGLE PI	HASE-2 MH	IO UNITS,	1 STATIC TI	MER										
115	60	5	125/250	10	100	0	6	0.2/2.0 0.6/2.0	0.05-3.0	12CEH52A2D A1D	L-2D	34 (15.4)	45 (20.4	

① Phase to neutral secondary basis.

Dimensions	. Section 16
How to Order	. Section 1
Instruction Books	.Section 17
Target and Contact Data	. Section 16
Relay Standards	. Section 16

Loss-of-Excitation Relays

GE Protective Relays

APPLICATION (Cont'd)

by the mho unit set with the larger characteristic regardless of the load on the generator, whereas the mho unit set with the smaller characteristic will only detect the loss if the generator is operating with a moderate to heavy load.

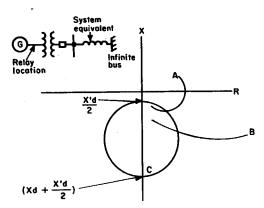
The dash curve A in Fig. 4 represents the case for conditions of a three-phase short circuit at F, the high side of the unit transformer, occurring when the machine is running at full load and unity power factor La. The fault was cleared at the critical switching time, that is, the maximum switching time for which the machine is just stable. When the fault is cleared in nominal relay plus breaker times with the voltage regulator in service, the impedance jumps to point S_a and follows the path of the dash lines back to the region around L_a. This is a stable swing, and the impedance path does not enter either characteristic.

The solid curve B illustrates an extreme case of a similar set of circumstances. In this case:

- a. The machine was running under-excited prior to the fault L_b.
- The fault was not cleared until the critical switching time for the machine in question.

- c. Low system impedance.
- The voltage regulator was out of service.

While the resultant swing was stable and would eventually settle back to the area around L_b, the impedance locus entered the larger relay characteristic. Studies indicate that the duration of its stay in the characteristic is in the order of 0.2 to 0.4 seconds. Thus, if the larger relay characteristic is employed with a time delay set for about 0.5 to 0.6 seconds, undesired tripping will not take place.

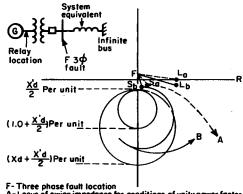

Thus, a mho relay set as in Fig. 3 can detect a loss of excitation for all machine loadings, but it is susceptible to tripping during a stable swing if the conditions of Fig. 4 exist. If two mho functions are used, and set with the diameters shown in Fig. 4, time delay can be incorporated with the larger set function, and incorrect tripping can be avoided. The smaller set function will provide high-speed tripping for a loss of excitation when the machine is carrying moderate to heavy loads. It should be recognized that a bonafide loss of excitation, when the machine is lightly loaded, may be detected only by the mho function set with the larger characteristic. This will result in a delayed trip which may have an adverse effect on the system. This contingency should be evaluated by the user.

Two models of the CEH relay are available for use in loss of excitation detection schemes.

The first model, designated CEH51A, contains a single mho function. It is designed primarily for use in those applications where the impedance loci will enter the characteristics due only to a loss of excitation; for example, for the conditions shown in Fig. 3.

The second model, designated the CEH52A (see Fig. 1, page 11-1), is designed specifically for use in those applications where the impedance loci can enter the required characteristic for other system conditions as well as a bonafide loss of excitation; for example, for the conditions depicted in Fig. 4. This relay contains two independent mho functions and a built in timer that operates in conjunction with one of the mho functions. The mho function without the timer can be set short, as shown in Fig. 4, to provide high-speed tripping for a loss of excitation when the machine is carrying moderate to heavy loads. The second mho function can be set larger as shown in Fig. 4, and through the built in timer provide a delay in tripping so that the machine will ride through any stable swings that may occur. External connections for the CEH52A relay are shown in Fig. 1.

DRAWINGS



A-Short-circuited field at full load

B-Short-circuited field at moderate load

Short-circuited field at no load or open-circuited field at no load

Fig. 3. Typical impedance of loci on loss of field excitation.

F-Three phase fault location
A-Locus of swing impedance for conditions of unity power factor load, and/or fast fault clearing, and/or voltage regulator in service (dashed lines)
La-Unity power factor 1.0 per unit load impedance.

Sa-Impedance immediately after fault is cleared. Locus of swing impedance for conditions of leading 0.95 power factor load, and fault clearing at critical switching time, and voltage regulator out of service. (solid lines) L_DO.95 Leading power factor unit load impedance Sp-Impedance immediately after fault is cleared.

Fig. 4. Typical impedance loci for swings resulting from system disturbances.

GGP

Power Directional Relays (3-Phase)

GE Protective Relays

For Protection of Generators Against Running Light as Synchronous Motors

APPLICATION

Turbine-driven Generators

The usual application of the GGP relay is to prevent motoring of a turbine-driven generator. The real purpose is to protect the turbine not equipped with integral protective means if its steam supply is lost or reduced. Under such a condition the generator will take power from the bus and run light as a synchronous motor, driving the turbine at normal speed. With no steam or insufficient steam present in the turbine, the blades may be damaged by overheating as developed by windage. Under normal operating conditions, such heat is dissipated into the steam.

Unbalanced Systems

The GGP is a 3-phase relay that is suitable for unbalanced loads and is preferred instead of three single-phase relays, giving full power directional protection for all varying conditions. The GGP should be used wherever phase-balancer action, in the presence of unbalanced loads, may cause the failure of single-phase power relays to trip.

Sensitivity

If motoring occurs, resulting in a power reversal (see Selection Guide below for the main unit current setting), the directional unit induction cylinder design of the relay will close contacts at once. These contacts energize the operating coil circuit of the timing unit, which starts to time out. This relay measures true watts, and is practically unaffected by the reactive component. Since the directional unit contacts are brought out to studs, they may also be used to energize an alarm.

Timing

The timing unit can be adjusted to operate in any time from 1.5 to 30 seconds, at which time the contacts close, tripping the generator breaker. If conditions return to normal at any time during the timing cycle, the power-directional unit opens its contacts, thereby de-energizing the timing unit, which resets. Tripping cannot occur unless the power reversal lasts long enough for the timing unit to complete its full travel and close its contacts.

CONTACTS

Electrically separate main and timing contacts, both single-circuit normally open. A 0.2/2-amp target seal-in is available with seal-in contacts connected across the timing (Type IAV) unit contacts. Standard contact ratings for the universal seal-in unit are applicable.

(Photo 841752)

Fig. 1. GGP53C relay (out of case)

BURDENS

Model	Terminals	VA	Watts	PF
CURRENT CI	RCUIT—5 A	MPS., 6	0°Hz	
GGP53C	3-4 5-6 7-8	22.0 11.0 11.0	6.4 3.2 3.2	0.29 0.29 0.29
POTENTIAL	CIRCUIT—1	20, 60 F	lz	
GGP53C	2-12 13-14 15-16	20.3 21.4 21.4	7.8 10.7 10.7	0.38 0.50 0.50

SELECTION GUIDE,—3-phase, 5 Amps

Frequency	Volts	Target and		unit Setting		g Unit (Seconds)	Model Number	Çase	Approx W	t in lb (kg)
(Hz)		Seal-in (Amps)	Volts	Amps ①	Min	Max		Size	Net	Ship.
60	120	0.2/2.0	120	0.010	1.5	30	12GGP53C1A	M2	22 (10)	34 (15.4)
50	120	0.2/2.0	120	0.010	1.5	30	C3A	, MZ	22 (10)	34 (13.4)

¹ At unit power factor.

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	

CEX57 and GSY51

Angle Impedance Relays

GE Protective Relays

For Out-of-step Tripping and Blinder Applications — Generators and Transmission Lines

DESCRIPTION

The Type CEX57 is a family of high-speed induction cup relays with angle impedance characteristics that can be set parallel to the impedance characteristic of a protected line. Generally, these relays are meant to be used with other protective relays in blinder applications to restrict the tripping zone of a scheme or they may be used in applications that require tripping for out-of-step conditions. These are a single-phase relays that includes two ohm units with opposite polarity and may also include an auxiliary telephone type unit.

The Type GSY51 relay includes a mho distance unit with reverse offset, six auxiliary telephone units and a target-seal in unit all mounted in one drawout case. This relay is intended for use with the CEX57E angle impedance relay to provide out-of-step protection for a generator.

APPLICATION

Type CEX57D and CEX57F relays are intended for use in blinder applications where it is desirable to restrict the tripping zone in transmission line protective schemes. Three CEX relays are required per terminal for blinder applications. Tripping will be permitted only when the fault impedance plots within the reach of the mho tripping function and inside both the CEX57 ohm units. See Fig. 1.

The contacts of the CEX57D ohm units are brought out separately and are externally connected in series with the contacts of the corresponding mho tripping function to provide supervision. For the CEX57F, the contacts are internally connected in series and are used to operate an auxiliary telephone-type relay. The contacts of this auxiliary are then used to supervise the corresponding mho tripping function.

The out-of-step tripping of transmission lines requires one **CEX57E** and one **NAA19B** relay. The NAA relay includes an overcurrent supervising unit, six auxiliary telephone units and a target-seal in. For further information on this protec-

tion scheme, refer to the **NAA19B** in Section 3.

The usual application of the GSY51A with associated CEX57E is at the terminals of a generator to provide out-of-step protection for the machine. Formerly system and generator impedance characteristics were such that the electrical center during a loss of synchronism condition was located out on the transmission system. Hence, the swing could be detected by line relaying or by out-of-step relaying schemes at selected line terminals. However, with the advent of EHV systems, larger generators and the expansion of transmission systems, generator and step-up transformers impedances have increased in magnitude while system impedances have tended to decrease. As a result, on many systems today, the system impedance center and the electrical center during swings can occur in the generator or in the generator step-up transformer.

Thus, the combination of one **GSY51A** and one **CEX57E** angle impedance relay located at the machine terminals is intended to detect an out-of-step condition when the swing locus passes through the machine or step-up transformer. See Fig. 2.

It is recommended that the GSY51A relay be calibrated at the factory for the user's specific application. Field calibration is difficult because of interaction between the various adjustments. The user should specify the relay forward reach in ohms, phase-to-neutral, at 90 degrees lead (into the generator) and the offset reach in ohms, phase-to-neutral, at 270 degrees lead.

OPTIONAL ITEM

A single-phase-to-ground fault that evolves into a double-phase-to-ground condition may appear as an impedance swing to the CEX-GSY scheme. To avoid the possibility of a misoperation under such conditions, a PJC11AV-A instantaneous ground overcurrent relay may be used to supervise the CEX-GSY contact circuit. See Type GSY instruction book for further details.

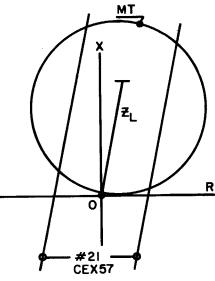


Fig. 1. Typical characteristic CEX57D or CEX57F as a blinder

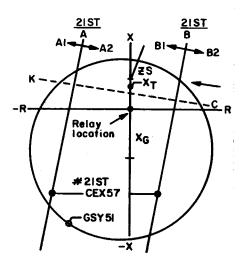


Fig. 2. Typical characteristic CEX57E with GY51A for out-of-step tripping

Dimensions	. Section 16
How to Order	.Section 1
Instruction Books	
Target and Contact Data	. Section 16
Relay Standards	. Section 16

CEX57 and GSY51

Angle Impedance Relays

GE Protective Relays

RATINGS

The Type CEX57 and GSY51 relays are rated 120-volts, 5-amperes and forms are available for 50 or 60 Hertz applications. The basic minimum ohmic reach taps, phase-to-neutral are:

CEX57 - 0.5/1.5/3.0 ohms GSY51-2/4/6 ohms

CONTACTS

The contacts of the CEX57 and GSY51 relays will close and carry momentarily 30 amperes, up to 250V dc. However, the circuit breaker trip circuit must be opened by an auxiliary switch contact or other suitable means since the relay contacts have no interrupting rating.

BURDENS

Relay Type	Frequency		n Current len②	Maximum Potential Burden①		
	Hz	PF.	VA.	PF.	VA.	
CEX57	60	0.80	5.13	0.59	21.8	
CEX57	50	0.81	4.41	0.69	20.0	
GSY51	60	0.93	3.3	0.84	14.87	
3)GSY51	350					

- ① Maximum burden is for restraint set at 100%. For other settings see instruction book.
- ② Burden imposed by each current circuit at 5 amperes and highest basic ohm tap.
 ③ Burden at 50 Hz will be slightly lower.

SELECTION GUIDE

Blinder Applications — Angle Impedance Units

TYPE CEX57D — (Single-phase — 3 Required) — 1 NO & 1 NC Contact per Unit, Electrically Separate

AC	DC	Ohm Unit	Max Torque	Model	Case	Approx Wt Lb(Kg)	
Rating	Control Volts	Range Ohms	Angle	Number	Size	Net	Ship
60 Hz 120V 5 Amp		0.5-30	5-35°	12CEX57D1A		30(13.6)	36(16.3)
50 Hz 120V 5 Amp		0.5-30	5-35°	12CEX57D2A	M-2		
YPE CEX57F—(Sing	le-phase — 3 Required	l) — Auxiliary Telephor	ne Unit Output of 2	NO Contacts per Relay			
60Hz 120V 5 Amp	48/125/250	0.5-30	5-35°	12CEX57F1A		31(14.1)	37(16.8)
50 Hz 120V 5 Amp	48/125/250	0.5-30	5-35°	12CEX57F2A	M-2		

Out-of-Step Tripping Applications

TYPE GSY51A—(One Required)—Use with One CEX57E for Generator Protection

AC			Mho Unit Range	Mho Unit Max	Mho Unit	Offset Max	Model	Case	Approx	Wt Lb(Kg)
Katin	Rating Volts Amp	Ohms	Torque Angle Lead	Offset ①	Torque Angle Lead	Number®	Size	Net	Ship	
60 H 120\ 5 Am	125	0.6/2	2-60	90°	0/4	270°	12GSY51A1A			
50 H 120\ 5 Am	125	0.6/2 0.6/2	2-60 2-60	90°	0/4 0/4	270° 270°	12GSY51A2A A3A	ι-2	33(15)	39(17.7)

① Mho unit has offset steps of 0.5 ohm

TYPE CEX57E—(One Required) Use with GSY51A Above or Use with NAA19B for Transmission Lines (1 NO & 1 NC Contact per Unit —Common Connection)

AC	DC	Ohm Unit	Max	Model	Case Size	Approx Wt Lb(Kg)	
Rating	Control Volts	Range Ohms	Torque Angle	Number		Net	Ship
60 Hz 120V 5 Amp		0.5-3.0 5-35° 12CEX57E1A					
50 Hz 120V 5 Amp		0.5-3.0	5-35°	12CEX57E2A	M-2	30(13.6)	36(16.3)

NOTE: Information on Type NAA19B relay is in Section 3.

² When ordering specify forward reach and offset ohms settings required.

IFCS

Time-overcurrent Relays with Voltage Control

GE Protective Relays

DESCRIPTION

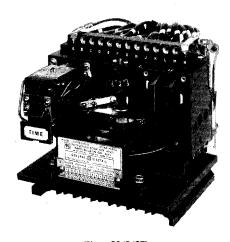
The Type IFCS relays include an induction disc time overcurrent unit with wound shading coils controlled by the contact of an undervoltage unit. This overcurrent unit is similiar to the IFC51 (inverse) or the IFC53 (very inverse) except that the shading rings on the U magnet have been replaced with the wound shading coils.

The Type IFCS relays are supplied with two electrically separate contacts. One of these contacts which operates the target seal-in unit is on the induction disc unit and can be used as a trip contact; the second contact of the seal-in unit can be used for alarm or remote indication.

APPLICATION

The Type IFCS relays are designed to provide backup protection at the generator against external phase faults which are not cleared by other protective equipment. An inverse time-overcurrent relay may be used for ground fault protection.

Such back-up protection at the generator is normally provided by either a voltagecontrolled inverse time overcurrent relay such as the IFCS, or by a single-step distance relay with definite time delay. The choice between the two forms of back-up relaying depends on the type of relays on the adjacent system with which the back-up relays must be selective. If the adjacent circuits are protected by inverse time overcurrent relaying, then the voltage controlled time-overcurrent relay Type IFCS can be used. Models are available with either inverse or very inverse time characteristics to coordinate with relays of like characteristic on the adjacent system. But if the adjacent circuits are protected by high-speed pilot or step distance relaying, then distance-type relays must be used for the back-up function with the definite time delay provided by an auxiliary timer.


Three single-phase Type IFCS relays are required to provide phase fault back-up protection. The current source for the relays should be current transformers at the neutral ends of the generator windings when such CT's are available. With these connections the relays will, in addition to external fault back-up protection, provide generator fault back-up protection even if the generator breaker is open or there is no other source of generation on the system.

The undervoltage unit in the Type IFCS relay should be supplied with phase-tophase voltage preferably from the generator potential transformers. The induction disc unit is typically set to pick up on fault currents below maximum load current and is prevented from operating on normal load conditions by the undervoltage unit. It should be recognized that accidental loss of potential to the Type IFCS relay will cause the relay to trip if generator load current in secondary amperes is greater than the pickup current of the relay. If a second set of potential transformers is available, an additional relay, the Type CFVB voltage balance relay, can be used to prevent false tripping of the IFCS upon accidental loss of its ac voltage source.

The voltage-controlled phase overcurrent relays, and the inverse time overcurrent ground relay if used, should be connected to trip a Type HEA hand reset auxiliary relay that in turn will trip the main and field breakers, and sound an alarm.

AVAILABLE TAPS (Time-overcurrent unit)

1/12 amp—1.0, 1.2, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0, 12.0.

(Photo 8043487)

Fig. 1. Type IFCS relay (removed from case)

Voltage Unit

The burden is at unity power factor and is listed below:

Rated Volts	Maximum Burden Watts
120	4.70

SELECTION GUIDE (0.2/2.0 amp target and seal-in)

Frequency		Undervoltage Calibration	Time Overcurrent	Model	Case	Approx Weight lb (kg)	
Voltage	Hertz	Range (Volts)	Unit Range (Amps)	Number	Size	Net	Ship
INVERSE (CHARACTER	ISTIC					,
120	60	70-100	1/12	12IFCS51AD1A	Cı	8	14
120	50	70-100	1/12	12IFCS51AD2A	C1	8	14
VERY INV	ERSE CHAR	ACTERISTIC					1
120	50/60	70-100	1/12	12IFCS53AD1A	C1	8	14

Dimensions	.Section 16
How to Order	
Instruction Books	. Section 17
Target and Contact Data	. Section 16
Relay Standards	. Section 16

Time-overcurrent Relays with Voltage Control

GE Protective Relays

BURDENS

Time-overcurrent Unit

Model	Model Hz	Range	Min. Tap		Burdens at Min. Pickup Min. Tap (ohms)			Burdens in Ohm (Z) Times Pickup	s ,
			Amps	R	J _X	Z	3	10	20
IFCS51	60		1.0	1.09	4.41	4.55	2.46	1.00	0.77
IFC\$53	60	1-12		0.35	1.18	1.23	1.21	0.82	0.51
IFCS51	50	7 '-'2		0.91	3.68	3.79	1.80	0.83	0.64
IFCS53	50	1		0.29	0.98	1.03	1.01	0.68	0.43

NOTE: The impedance values given are those for minimum tap, the impedance for other taps at pickup current (tap rating) varies inversely (approximately) as the square of the tap rating. For example, an IFCS53 60 hertz relay has an impedance of 1.23 ohms on the 1.0 ampere tap. The impedance of the 4.0 amp tap is $(1.0/4.0)^2$ x 1.23=0.077 ohms.

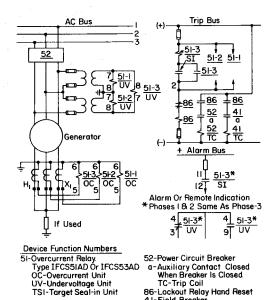


Fig. 3. External connections for relay Type IFCS with generator (275A3812)

TC-Trip Coil 86-Lockout Relay Hand Reset

41-Field Breaker

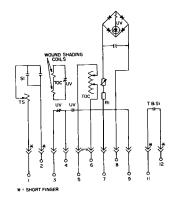


Fig. 5. Internal connection diagram (269A3197) for IFCS relay.

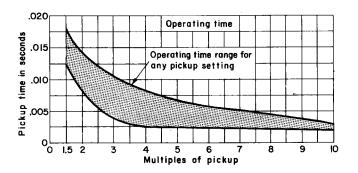


Fig. 2. Time-current curve for instantaneous unit

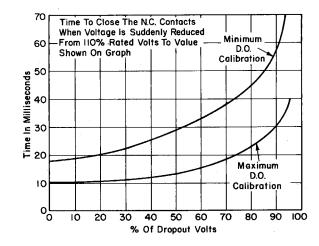


Fig. 4. Operating time curves for the IFCS (165A7560) for voltage unit.

PJG

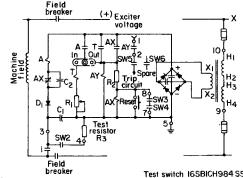
Machine Field Ground Detector Relay

GE Protective Relays

For Detecting Grounds and Preventing Possible Short Circuits

DESCRIPTION

The Type PJG12B relay detects grounds in a normally ungrounded field winding of a synchronous machine. It may be used for machine fields rated 600 volts or less with ceiling excitation up to 750 volts and no more than 1000 volts reverse, or back, excitation. A choice of either instantaneous or time-delayed operation is determined by selection of link position. The PJG12B operates for 120 or 240 volts ac, 50 or 60 Hertz. A filter circuit reduces ripple voltage in the rectifier bridge output to no more than 3 volts peak-to-peak.

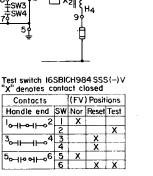

The relay is arranged for either hand-reset or electric reset from a separate switch or push button.

The PJG12B consists of a plunger-type instantaneous overcurrent relay (A), a thermal time-delay unit (T), a hinged-armature auxiliary unit (AX), and a voltage operated instantaneous unit (AY) which provides output contacts and target indication. The output contacts (AY) will make and carry 6 amperes continuously and 30 amperes for tripping duty.

APPLICATION

Short circuits in normally-ungrounded fields of synchronous machines can often be prevented by detecting and removing a ground before a second ground results in a short circuit and possible serious damage. The Type PJG12B relay is designed for the detection of such grounds and can be used to sound an alarm or for tripping duty.

To ensure that this protection will function for a ground in the field winding, it is necessary that the rotor iron be grounded without depending on a path through the bearings, since this oil film may withstand the voltage applied by the relay, and thus prevent the relay from operating when required. Grounding means must not be in-



1. Stud numbers refer to PUGI2B relay
2. Transformer primary shown connected for 240VAC. For I20 VAC, primaries are connected so follows:

H1 H3 OLO

H2 H4

This test checks correct relay operation but not the fact that the rotor is properly grounded.

(Photo 8008306)

Fig. 2. Type PJG ground

Fig. 1. Typical connections for Type PJG12B relay

detector relay

stalled where it will bypass the bearing insulation which is provided for prevention of shaft currents. ①

The PJG12B may be used for instantaneous or time-delayed operation. The time delay is intended to override transient conditions which may occur when an excitation system is transferred between manual and automatic control. It is also desirable to prevent operation of this relay for grounds that may occur during maintenance on the field metering circuits. For instantaneous operation, the operating time is no more than 100 milliseconds at rated voltage. For time-delay operation, relay operating time is 2.0 \pm 0.5 seconds at rated voltage and 25°C ambient temperature.

SENSITIVITY

The ground detector unit will respond to grounds in the negative field lead of up to 500 ohms at 80 percent of rated ac relay voltage.

BURDENS

The maximum burdens of these relays at their rated voltage and frequency are 66 volt-amps for 60 Hertz and 33 volt-amps for 50 Hertz applications.

SELECTION GUIDE

Volts@	Volts® Freq Ac Hz.	Machine Field Voltage-Vdc			Model Number®	PJG Models Superseded by	Case	Approx Wt in lb (Kg)	
AC		Nominal	Ceiling	Reverse	Model Numbers	PJG12B1A	Size	Net	Ship
120/240	50/60	600	750	1000	12PJG12B1A	12PJG11B1A, 2A 12PJG11E3A 12PJG11F6A 12PJG11H1A	MI	23 (10.4)	28 (12.7)

- ① Recommended field grounding practice for a particular machine should be obtained from the machine manufacturer.
- ② Relay will be connected for 240 volts if requested on the requisition. Otherwise relay
- will be furnished connected for 120 volts. Voltage may be easily changed from 120 to 240 volts or vice-versa in the field.
- ③ Does not include test switch. Recommended switch is Model Number 16SB1CH984SSS(-)V.

Dimensions	. Section 16
How to Order	. Section 1
Instruction Books	. Section 17
Target and Contact Data	. Section 16
Relay Standards	Section 16

IFCV

Time-overcurrent Relays with Voltage Restraint

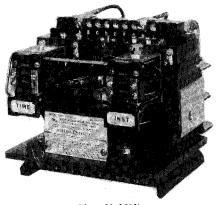
GE Protective Relays

DESCRIPTION

The Type IFCV relays are drawout, induction-disc time-overcurrent relays having voltage restraint and inverse time characteristics.

The Type IFCV relays are supplied with two electrically separate contacts. One of these contacts, which operates the target seal-in unit, is on the induction disc unit and can be used as a trip contact; the second contact of the seal-in unit can be used for alarm or remote indication.

WHERE TO USE


System Fault Backup Protection should be provided at the source of fault current, the generator, to minimize the damage resulting from a short circuit if the primary protective devices should fail to operate. Overcurrent relays with voltage restraint, Type IFCV, are recommended for this application. Three single-phase relays are required for each generator, with potential coils energized from line-to-line potential of the protected line. With full voltage applied to the restraint coil the relay should be set to pick up between 150 and 200 percent of full load on unregulated machines, and between 200 and 250 percent on regulated generators. For best protection the relays should be connected to trip both the armature and field breaker. This can be effected by means of a multicontact auxiliary relay, Type HSA.

Generator Fault Backup Protection. Under certain conditions this relay will provide protection for the generator. It will operate if an internal fault is not cleared by differential relays, provided sufficient current is fed into the fault from other sources.

Voltage Restraint will prevent the relay from operating on heavy loads such as motor-starting currents. With zero restraint voltage the relay will operate at 25 percent of tap value. Therefore, complete loss of restraint potential will usually allow the relay to operate even though machine output is less than full load. High sensitivity is achieved with the voltage restraint feature, and the relay requires less current to operate on faults than on loads or power swings.

Relay Time Characteristics are suitable for obtaining selectivity with feeder circuits which utilize time-overcurrent relays.

Typical internal and external connections are shown on page 2.

(Photo 8043510)

Fig. 1. 1FCV51BD Relay removed from case.

BURDENS—Time-overcurrent Unit POTENTIAL CIRCUIT

Volts	Frequency (Hz)	Watts	VARS	VA	
120	50.	9.26	14.4	17.1	
120	60	9.43	17.3	19.7	

CURRENT CIRCUIT

Range	Freq.	Тар	Amp	Imp Ohms	VA	PF	
2-16	50	2	5	3.10	77.5	.43	
2-16	60	2.	5	2.58	64.5	.43	

Instantaneous Unit

Hi Seismic		Line		_Min	Burde	Burdens at Min. Pickup (Ohms)			Burdens in Ohms (Z) Times Pickup		
Inst. Unit (Amps)	Hz	Posi- tion	Range (Amps)	Pickup (Amps)	R	J _X	z	3	10	20	
6-150	6-150 60	L	6-30	6	0.110	0.078	0.135	0.095	0.081	0.079	
0-150	"	н	30-150	30	0.022	0.005	0.023	0.022	0.022	0.022	
6-150	50	L	6-30	6	0.092	0.065	0.112	0.079	0.068	0.066	
0-150	30	Н	30-150	30	0.018	0.004	0.019	0.018	0.018	0.018	

SELECTION GUIDE—Single-phase (with 0.2/2.0 Amp T&SI)

Current	Operating Range	(Amps)							Approx	Weight
Time Overcu	ırrent Unit	Instantan-	Restraint	Pastraint Model Number		Contacts	Case	in lb	(kg)	
At Rated Voltage	At Zero Volts	eous Unit (Volts)	60 Hertz	50 Hertz	0	Size	Net	Ship		
2-16	0.5-4		120	12IFCV51AD1A	12IFCV51AD2A	2-N.O.	C1	8 (3.6)	14	
2-16	0.5-4	6-150	120	12IFCV51BD1A	12IFCV51BD2A				(6.3)	

① See description paragraph above.

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	

IFCV

Time-overcurrent Relays with Voltage Restraint

GE Protective Relays

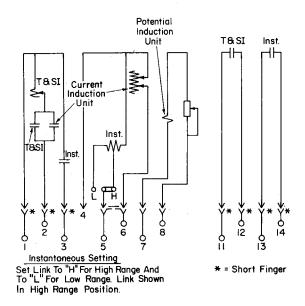


Fig. 2. Internal connections Type IFCV51BD relay (0275A3203)

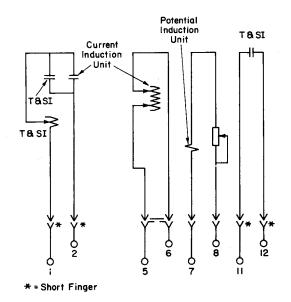


Fig. 3. Internal connections of Type IFCV51AD relay (0273A9599)

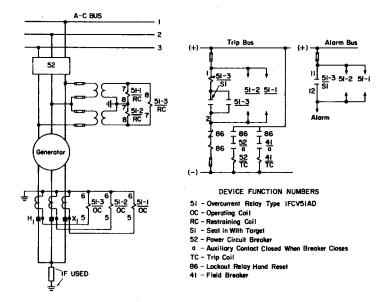


Fig. 4. Typical external connections of IFCV relays for back-up protection against external faults (275A4451) to a generator.

GE)

Static Negative Sequence Time Overcurrent

GE Protective Relays

For the Protection of Generators from Unbalanced Phase Currents

DESCRIPTION

The Type SGC relay is a static negative-sequence time overcurrent relay. It is intended primarily for the protection of generators against possible damage from unbalanced currents resulting from prolonged faults or unbalanced load conditions. The SGC features high sensitivity and dial selection of K setting from K=2 to K=40. A reset memory approximates machine cooling following intermittent negative-sequence overcurrent. The SGC comes in a standard M-2 drawout case.

APPLICATION

When a generator is subjected to an unbalanced fault or load, its stator current includes a negative-sequence component (I₂). This current sets up a counter-rotating flux field in the machine which causes double frequency currents to flow in the rotor iron and slot wedges, resulting in local heating. This heating will not be excessive if I₂²t is less than K, a constant of the machine, where I22t is the integrated product of negative-sequence current squared (I22) and the duration of the fault (t) in seconds. The time characteristic of the trip circuit of the SGC relay is $I_2^2 t = K$, with \bar{K} being continuously adjustable from 2 to 40 (see figure 2, next page). This permits matching the characteristics of the relay with the I₂²t capability of the machine to be protected.

The Type SGC relay is designed to protect the generator from damage due to abnormal conditions on the system rather than from damage caused by internal faults. The SGC is thus in a sense providing backup protection for system relays. Hence, while it is essential that the time characteristic (value of K) be selected so that the machine will be cleared before suffering damage from an external unbalanced condition, it is also necessary that the relaying schemes responding to system faults be selected so that their correct operation will remove the fault before the SGC operates.

OPERATION Input Sensing

The SGC has a negative-sequence network which accepts inputs from the three CT phase currents and develops the negative-sequence component (I₂) of the generator current. The output of the network is adjusted by the input tap setting to establish a per unit reference level as close as possible to full load generator current. Taps are

provided in 0.2 ampere steps from 3.1 to 4.9 (5 amp relay) and .62 to .98 (1 amp relay) for matching to the CT secondary current corresponding to the rated full load generator current.

Trip Function

The per unit negative-sequence component (I_2) is integrated, with respect to time, to achieve the operating time characteristic of $I_2^2 t = K$, where K is continuously adjustable from 2 to 40. The integrator is enabled by a Trip Level Detector which has an adjustable set point of 0.04 to 0.40 per unit of tapsetting. (Corresponding closely to 0.04 to 0.40 of full load generator current). When I_2 exceeds the set point, integration commences and a timer also starts. The timer causes operation after 10-990 seconds, however the unit will not operate in less than 0.2 seconds.

Reset Function

The dropout of the trip-level detector is close to its pickup. Thus if I_2 were to fall below pickup value before the timing cycle were completed, the integrator would stop and a linear ramp resetting of the integrator would commence at the rate of 2.5 seconds for each percent of full time (250 seconds) achieved in the timing cycle at dropout. This approximates machine cooling following intermittent current. If I_2 were to increase again above pickup, the integrator would again be initiated, beginning at whatever value the reset function had reduced it to.

Alarm Function

The alarm circuit is initiated by the per unit negative-sequence component (I_2) with a pickup adjustment range of 0.02 to 0.20 per unit of generator current. An inherent time delay of 3 seconds is provided to eliminate nuisance alarms on transient conditions.

Indication

Visual indication of the Alarm Level Detector is provided by a light-emitting diode (LED). Similarly an LED indicates power supply operation.

Remote Readout

The SGC21A, B, & C relays provide an output point which permits monitoring the negative-sequence current (I_2) level by means of a switchboard instrument supplied with the relay for remote mounting.

Fig. 1. Type SGC21B Static Negative Sequence Time-overcurrent relay (out of case)

The instrument is a GE Type DB-40 dc microammeter calibrated to indicate I₂ as a percentage of input tap block setting. Full scale is 20 percent.

The connection between the relay terminal and the remote meter should be made with a shielded twisted pair number 18 AWG or larger with the shield grounded at the relay.

Ambient Temperature

-20 C to +65 C.

BURDEN

The ac current burden is less than 0.20 ohms per phase.

Contact Outputs

One normally open contact is provided for the trip function with a target seal-in unit. One normally open contact is provided for the alarm function.

POWER SUPPLY

The SGC relays in this section have a regulated dc power supply and will perform properly over a range of dc control from 80 percent to 110 percent of rated voltage. The dc power supply presents a burden of less than 8 watts untripped or less than 12 watts tripped for 48V or 110/125V dc.

Dimensions	Section 16
How to Order	
Instruction Books	
Target and Contact Data	Section 16
Relay Standards	

Static Negative Sequence Time Overcurrent

GE Protective Relays

TRIPPING CONTACT RATING

The tripping contact will make and carry 30 amperes dc for tripping duty at control voltages of 125V dc or less. However, the circuit breaker trip circuit must be opened by an auxiliary switch contact or other suitable means.

CT Secondary Circuits

5 amp relay

Continuous current—10 amp on any or all CT secondaries.

One-second current—250 amp on any or all CT secondaries.

1 amp relay

Continuous current—2 amp on any or all CT secondaries.

One-second current—50 amp on any or all CT secondaries.

Accessory

A card extender (catalog number 184B5645G1) is available for testing the printed circuit cards. It should be listed as a separate item on an order.

Alarm Contact Ratings

The alarm function contact (1 N.O.) will make and carry 3 amperes continuously or 30 amperes for 2 seconds. Interrupting ratings are:

ALARM UNIT CONTACT INTERRUPTING RATINGS

Voltage	Amperes					
	Inductive@	Non-inductive				
Ac	<u>-</u>					
115 230	0.75 0.5	2.0				
Dc						
48 125	1.0 0.5	3.0 1.5				

The inductive rating is based on the inductance of a coil having an L/R ratio of approximately 3 to 1.

TAP BLOCK SETTING

Taps are available in 0.2 amp steps between 3.1 and 4.9 amperes and cover the normal load current range from 3.0 - 5.0 amperes on 5 amp relays. On the 1 amp relays taps are available in 0.2 amp steps between 0.62 - 0.98 and cover the normal load current from 0.6 - 1.0 ampere.

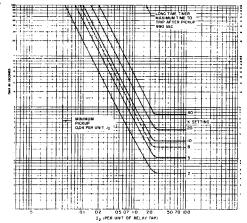


Fig. 2. Type SGC Typical Time-current characteristics—I₂²t = K.

(SGC 21A

SELECTION GUIDE

1-N.O. Tripping Contact and 1-N.O. Alarm Contact

AC Rating		Power Supply Target I ₂ Minimum I ₂ Sensitivity (P. Voltage Seal-in Remote①		ensitivity (P.U.)	l ₂ ²T	Model No.	Case	Approx Wt lb (kg)			
Hz	(Dc Amps)		(Dc Amps)	Readout	Trip Function	Alarm Function	Range	Model No.	Size	Net	Shipping
60 50 50 60	5 5 1 5	48/110/125 48/110/125 48/110/125 125/250③	0.2/2.0	NO®	0.04-0.40	0.02-0.20	2-40	12SGC21A1A 12SGC21A2A 12SGC21A3A 12SGC21A4A	M-2	20(9.1)	28 (12.7)
60 50 50 60	5 5 5 5	48/110/125 48/110/125 125/220③ 125/250③	0.2/2.0	YES	0.04-0.40	0.02-0.20	2-40	12SGC21B1A 12SGC21B2A 12SGC21B3A 12SGC21B4A	M-2	24 (10.9)	32 (14.5)
60 50 60	5 5 5	48/110/125 48/110/125 125/250③	0.2/2.0	NO®	0.04-0.40		2-40	12SGC21C1A 12SGC21C2A 12SGC21C3A	M-2	20 (9.1)	28 (12.7)

- ① Includes remote readout circuitry but no external DB-40 instrument.
- 2 Measured in per unit (P.U.) of tap setting which closely corresponds to full load generator current.
- 3 Includes an external pre-regulator to allow use of higher voltage.

CONNECTION DIAGRAM

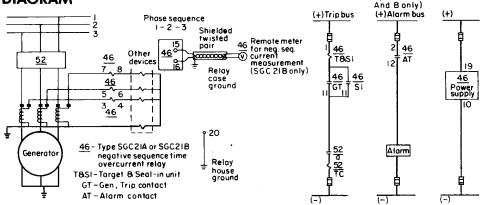


Fig. 3. Typical External Connections For Type SGC Relay.

SECTION: 10

Voltage and Frequency Relays

CFV, CFVB High-speed Voltage Balance 1
IAV Time Delay Voltage
ICR Phase-sequence and Undervoltage 7
IFV Time Delay Voltage
NBV Voltage Unbalance
NGV Voltage
PJV Instantaneous Voltage 15
STV Overexcitation
SFF Substitution
SFF200 Static Digital Frequency
IJF Over-and Under-frequency
TOV 1000 Modular Voltage
TOV 1000C Modular Voltage 28

CFV and CFVB

High Speed Undervoltage and Voltage-balance Relays

GE Protective Relays

APPLICATION

UNDERVOLTAGE PHASE-FAULT DETECTION is provided by the Type CFV12 relay and is used in preference to the Type ICR when high-speed operation is desired. The drop-out on a phase-to-phase fault will be approximately 20 percent lower than the calibrated dropout on a 3-phase fault. Where more accurate fault detection is required, it is recommended that three single-phase Type CFV16A relays be used. They will have the same dropout on singleor three-phase faults.

PHASE SEQUENCE of a three-phase system can be continuously checked by the Type CFV12 relay in addition to providing undervoltage fault detection.

GROUND-FAULT DETECTION is provided by the CFV16B relay using one single-phase relay across the broken-delta corner of a wye-delta transformer.

VOLTAGE-BALANCE RELAYS, type CFVB11B, are used to block other relays or devices that will operate incorrectly when a potential transformer fuse blows. They require two sets of potential transformers that normally receive the same primary

voltage during the time when blown-fuse protection is required.

CONTACT RATING

Current Closing — 30 amperes, 250 volts maximum.

Current Carrying Ratings are limited by the different ratings of the target and holding coils. The choice of these ratings depends on the current taken by the tripping circuit. Refer to target and contact data in Section 16.

TARGET AND HOLDING COIL **RATINGS — AC OR AMPERES**

Rating of Coil	1 amp	0.2 amp
Tripping Duty Carry Continuously	30.0	5.0 0.5

The dc resistance of the target coil and the holding coils are 0.25 ohms each for the 1.0-amp target, 7 ohms each for the 0.2-amp target. For the universal target, the resistance is 0.13 ohms for the 2-amp tap and 7 ohms for the 2-amp tap.

Fig. 1. CFVB11B Relay (out of case)

SELECTION GUIDE

_		Calibration Range	Holding Coil	Target	Model	Cons	Approx. Wt. lb. (kg)				
Frequency (Hz)	Voltage	(Dropout Volts)	(Amps dc)	(Amps dc)	Number	Case Size	Net	Ship			
CINICIE DIL	CHARLE PLACE VOLVECT AND AND TARGET AND HOLDING COIL ON N.C. CONTACT SHOPTING RAP ACPOSS N.O. CONTACT										

60	115	15-45 15-45 15-45 30-105 30-105 30-105 30-105	1.0 0.2 — 1.0 0.2 —	1.0 0.2 — 1.0 0.2 — 1.0	12CFV16A4A A5A A6A A1A A2A A3A A15A	Sì	12 (5.4)	18 (8.1)
50	110	30-105	0.2	0.2	A17A			

SINGLE-PHASE VOLTAGE 1-N.O., 1-N.C.-TARGET AND HOLDING COIL ON N.O. CONTACT-SHORTING BAR ACROSS N.C. CONTACT

60	115	15-45 15-45 15-45 30-105 30-105 30-105	1.0 0.2 — 1.0 0.2 —	1.0 0.2 — 1.0 0.2	12CFV16B4A B5A B6A B1A B2A B3A	\$1	12 (5.4)	18 (8.1)
----	-----	---	------------------------------------	-------------------------------	---	-----	-------------	-------------

THREE-PHASE UNDERVOLTAGE AND PHASE SEQUENCE 1-N.O., 1-N.C. (HOLDING COIL ON BOTH)

60	115	30-120 30-120	1.0 0.2	1.0 0.2	12CFV12A3A A4A		. 12	18
50	115	30-120 30-120	0.2 1.0	0.2 1.0	A12A A13A	S1	(5.4)	(8.1)

Dimensions	. Section 16
How to Order	
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	. Section 16

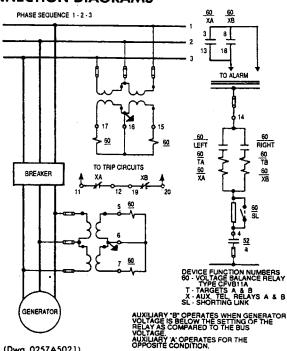
CFV and CFVB

High Speed Undervoltage and Voltage-balance Relays

GE Protective Relays

Frequency Rated (Hz) Voltage	Rated	Calibration Range	Model	Aux. Relay Voltage	Case Size	Approx. Wt. in lb (kg)	
	Voltage	(Dropout Volts)	Number	(dc)		Net	Ship
		THREE-PHASE VOLTAGE	BALANCE 2-N.C. AN	ID 1-N.O.		· · · · · · · · · · · · · · · · · · ·	
60	120	50-95% of rated voltage on either source when other	12CFVB11B1A B5A B6A	125/250 48/125 110/220		22	34
50	100 120	source is 100% same.	B4A B2A B3A B7A	110/220 125/250 110/220 48/125	M2	(9.9)	(15.4

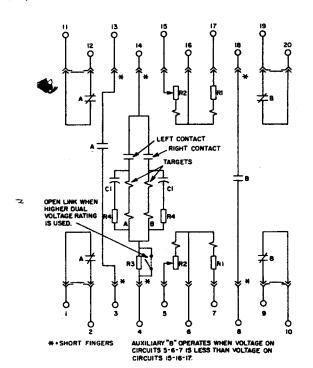
BURDENS


CFV

Relay	Volts	Freq.	Dropout	Studs	Watts	Vars.	Volt-Amp.
CFV12A	115 {	60 \$50	6-25 6-25 30-120 30-120 40-160 6-25 6-25 30-120 30-120	5-6 7-8 5-6 7-8 7-8 5-6 7-8 5-6 7-8	3.8 11.0 3.8 11.8 11.7 4.3 14.2 4.3	3.9 12.2 3.9 12.2 12.3 4.5 14.9 4.5	5.4 17.0 5.4 17.0 17.0 6.4 20.3 6.4 20.3
CF16A or CFV16B	115	60 ▼ 50 ▼	6-20 15-45 30-105 6-20 15-45 30-105 30-105	5-6	14.4 12.2 12.2 14.7 10.8 10.8 9.0	3.2† 1.6† 1.6† 3.0† 2.2† 2.2† 1.8†	14.8 14.8 14.8 15.0 11.0 11.0 9.2

CFVB (120 VOLTS)

Circuit	Frequency (Cycles)	Impedance (Ohms)	P.F.	V.A.
5-6	60	5075	0.97	2.83
6-7		2240	0.97	6.43
15-16		5075	0.97	2.83
16-17		2240	0.97	6.43
5-6	50	5080	0.97	2.83
6-7		2155	0.97	6.68
15-16		5080	0.97	2.83
16-17		2155	0.97	6.68


CONNECTION DIAGRAMS

(Dwg. 0257A5021)

Fig. 2. Typical external connection diagram for three-phase voltage balance relay, Type CFVB11B, used to indicate when a potential transformer fuse flows.

†Capacitive

(Dwg. 0246A6890-0)
Fig. 3. Internal diagram for CFVB11B Relay.

Voltage and Frequency Relays

IAV

Time Delay Voltage Relays

GE Protective Relays

DESCRIPTION

The Type IAV relays are single phase induction disk relays designed to respond, with time delay, to either an increasing or a decreasing voltage, or both. Some models are frequency compensated, and some include an instantaneous unit (hinged armature type). Most models listed in the Selection Guide include a target seal-in unit on all contacts.

The basic mechanism of all models is an induction-disk unit with either a tapped coil or a tapped resistor for setting pickup.

[In the overvoltage models, the relay is calibrated on increasing voltage to close the normally open contact at tap setting. The time dial adjusts the angle through which the disk rotates and, hence, the time delay.]

In the undervoltage models, the relay is calibrated on decreasing voltage to close the normally closed contact at tap setting. The time dial adjusts the angle through which the disk rotates at voltages above tap setting.

In the combined overvoltage and undervoltage models, the relay is calibrated on increasing voltages to close the normally open contacts at tap setting and on decreasing voltages to close the normally closed contacts at various percentages of tap setting.

For the undervoltage and combined undervoltage and overvoltage relays, the two connecting plug S2 case is used to prevent false tripping when the relay is removed or replaced. Either plug completes the coil circuit and thus opens the normally closed contact used with undervoltage operation. Both plugs are needed to complete the contact circuits.

APPLICATION

OVERVOLTAGE RELAYS

Type IAV overvoltage relays are used for protection against simple overvoltage, but other applications are also common. They are applied to ground detection, both on feeders and on ac generators, and they are also used in timed switching arrangements, where their dependability and accuracy make them preferable to purely mechanical timing relays.

For protection against overvoltage in a three-phase system, use the IAV51A relay (Fig. 2). For instantaneous protection as well as time delay, use the IAV71B.

For the detection of grounds on ungrounded three-phase systems, two methods are in general use. One measures the zero sequence potential (Fig. 4), and the other measures the actual voltage between the system neutral and ground (Fig. 6).

For the circuit of Figure 4, use Type IAV51D, a low pickup relay which has its operating circuit tuned to the rated frequency. The potential transformers used in this circuit are connected grounded-Y primary, broken- delta secondary. The primaries should have ratings equal to the line-to-line voltage of the system, and the secondaries can have ratings of either 67 or 115 volts.

Select a relay model with a continuous rating of three times the potential transformer secondary voltage. This is necessary because, when a ground occurs, the zero sequence voltage may be up to three times the normal transformer secondary voltage. Thus, with a potential transformer secondary rated 67 volts, use a 199-volt relay coil. For ground fault protection of ac rotating machines, use a circuit similar to that shown in Figure 6 applying Type IAV51D or IAV51K relays. These are low-pickup relays whose coil circuits are tuned by capacitors to their rated frequencies. The circuits are thus rendered only one-eighth as sensitive to the third harmonic as they are to the rated frequency.

In Figure 6, a distribution transformer is connected between the machine neutral of the generator and ground. Normally there is no voltage on the transformer but during a fault, there is a voltage with a worst-case magnitude equal to the phase-to-ground value.

Greater sensitivity can be obtained by choosing a distribution transformer with higher secondary voltage. In such a case, the relay will not carry the fault voltage continuously, and provision must be made to de-energize the operating coil using an aux-

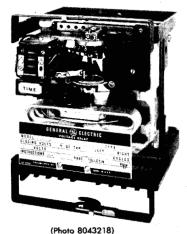


Fig. 1. Type IAV71A overvoltage relay (out of case)

iliary relay. The short-time rating for both IAV51D and IAV51K is 360 volts for 10 seconds.

The IAV51M relay may be used for a definite time delay and the time is adjustable from 3 to 30 seconds by means of a time dial. Operating time is defined as the time to close the contacts with voltage suddenly raised from zero to the rated value.

UNDERVOLTAGE RELAYS

For simple undervoltage protection, select the IAV relay according to the time voltage characteristic required.

In a typical automatic-preferred emergency throwover scheme, the undervoltage contacts of the IAV54E relay are used to trip the circuit breaker in the normal source circuit, and the auxiliary switch (52b) of this normal source breaker permits the voltage closing contacts of an IAV51A relay in the emergency source to close its circuit breaker.

COMBINED UNDERVOLTAGE AND OVERVOLTAGE RELAYS

Types IAV53, IAV69, IAV70, and IAV73 relays are time-delay, over- and undervoltage relays having two contacts, one of which closes on overvoltage and the other on undervoltage.

WEI EIZEI 1 GEG.	
Dimensions	Section 16
How to Order	Section 1
Instruction Books	
Target and Contact Data	Section 16
Relay Standards	Section 16

IAV

Time Delay Voltage Relays

GE Protective Relays

FREQUENCY COMPENSATION

The following Type IAV relays are frequency compensated:

Overvoltage relays—IAV71, IAV72 Undervoltage relays—IAV74A

Undervoltage and Overvoltage relays—IAV73A, IAV73B

These relays have uniform characteristics over a frequency range of 30-90 Hertz. A typical application is on systems supplied by hydro-generators, where the frequency tends to increase when faults occur. Frequency compensation is provided by an R-C circuit across the wound shading coils of the induction disk operating coil and core unit.

CHARACTERISTICS

Type IAV relays will continuously withstand rated voltage on all taps, and tap voltage on all taps above rated voltage. For the minimum and maximum taps shown in the list below, the following intermediate taps are available:

Tap Range	Taps Available
5.4-20	5.4, 7.5, 12.5, 20
10-40	10, 15, 25, 40
16-64	16, 24, 40, 64
28-112	28, 42, 70, 112
55-140	55, 64, 70, 82, 93, 105,
	120, 140
110-280	110, 128, 140, 164, 186,
	210, 240, 280
220-560	220, 256, 280, 328, 372,
	420, 480, 560

The overvoltage relays and the undervoltage relays are provided with time dials for adjustment of time delay. The combined under- and overvoltage relays are made both with and without time-delay adjustment. Models IAV53, -69, and -73 have time delays which are functions of the setting of the undervoltage contacts. Model IAV70 has a time dial which permits adjustment of time delay independently of the voltage settings.

TRIPPING CIRCUITS AND CONTACT RATINGS

The current carrying rating of the contact circuit is determined by whether the relay has a seal-in unit and by the tap used on the seal-in coil. Without a seal-in unit the relay contacts will close and carry 30 amperes for tripping duty and 2 amperes continuously at control voltages of 250 volts dc or less. Refer to Section 16 for data on target seal-in units.

SELECTION GUIDE—Type IAV

General Description	Rated Volts	Tap Range Volts		Target Seal-	Contacts	Model Numbers		Case Size	Approx Wt, lb (kg)	
Description	Ac	Min	Max	in in	Confacts	60 Hertz	50 Hertz	J.Zc	Net	Ship
OVERVOLTAGE (DEVICE No. 59)										
General duty, overvoltage and control switching. Time delay 1 to 10 seconds at 1.6 times top setting.	115 208 230 460	55 70 110 220	140 140 280 560	0.2/2	1-N.O.	12IAV51A1A A7A A2A A3A	12IAV51A4A A9A A5A A11A	\$1	12 (5.4)	15 (6.8)
Same as IAV51A except 2-N.O. Contacts 1-Target Seal-in.	115 199 230	55 70 110	140 140 280	0.2/2 (1)	2-N.O.	12IAV52A1A A7A A2A	12IAV52A4A A9A A5A			
Low Pick-up										
Ground detection on 3-phase systems and on generator stator windings. Time delay 0.75 to 7.5	115 ^① 199 ^① 345 ^①	10 16 28	40 64 112		1-N.O.	12IAV51D2A D1A D9A	12IAV51D5A D4A D10A	SI	12 (5.4)	15 (6.8)
seconds at 200% of tap setting, or 4 seconds on N.O. 10 TDS.	67 ①	5.4	20	0.2/2		12IAV51K1A	12IAV51K2A	S1@	13 (5.9)	16 (7.3)
Same as IAV51D or IAV51K except	199①	16	64		2-N.O.	12IAV52D1A		S 1	12(5.4)	15(6.8
2 N.O. Contacts	67 ①	5.4	20			121AV52K1A	12IAV52K2A	S1@	13 (5.9)	16 (7.3)
Timing Applications			•							
Single circuit closes with time delay. Fixed pickup voltage. Time delay: 3 to 30 seconds at rated volts.	115 208 230		55 100 110	0.2/2	1-N.O.	12IAV51MIA M4A M3A	12IAV51M2A 	r.s	12 (5.4)	15 (6.8)
Frequency Compensated		-								
Frequency sensitive applications. Otherwise same as IAV51A compensated 30-90 Hertz	115	55	140			12IAV71A1A	12IAV71A3A			
Frequency compensated; instantaneous unit added, also frequency compensated; for hydro- generator applications; general duty for ac generator overvoltage protection and voltage regulator backup. 1 to 10 second time delay.	115 230 230	55 110 110	140 280 280		1-N.O.	12IAV71B2A③ 85A:③ 86A.④	12IAV7183A③ 		13	16
Similar to IAV71A except 2 N.O. Contacts	115	55	140	0.2/2		12IAV72A1A		SI	(5.9)	(7.3)
Similar to IAV72A except includes inst. unit with 1 N.O. Contact	115 230	55 110	140 280		2-N.O.	12IAV72B1A3	12IAV72B4A3 B3A3			
Similar to 1AV72B except includes inst. Unit with 2-N.O. Contacts	115	55	140				12IAV72C3A3			

- ① IAV51D, 51K, 52D, and 52K-10 Second Rating at 360 volts.
- 2 Includes external capacitor.
- 3 Inst. unit adjustable 120-200 volts.
- 4 Inst. unit adjustable 180-300 volts.

Time Delay Voltage Relays

GE Protective Relays

SELECTION	GUIDE-T	ype IAV
-----------	---------	---------

General	Rated Tap Range Volts		Target	Model I	Number	Case	Approx Wt, lb (kg)					
Description	Volts Ac	Min	Мах	Seal- in	Contacts	60 Hertz	50 Hertz	Size	Net	Ship		
UNDERVOLTAGE (Device No. 27)		,										
5 Sec Time Delay	67	32 55	80			12IAV54E14A						
at zero volts if set on No. 10 TD	115 208	110	140 280			E1A E13A	T2IAV54E4A		,			
Time Range 1 to 13 sec	230	110	280			E2A	E5A					
at 80% of tap.	460	220	560			E3A	E6A					
30 Sec Time Delay at zero volts	115 230	110	140 280	0.2/2		12IAV54F1A F2A	12IAV54F4A					
if set on No. 10 TD	460	220	460	5127 2		F3A						
75 Sec Time Delay	115	55	140		1 N.C.	12IAV54H1A		\$2	12	16		
at zero volts on No. 10 TD	460 115	220 55	560 140		-	H2A 12IAV54J1A		32	(5.4)	(7.3)		
Same as IAV54E except no Seal-in	230	110	280	None		J2A			(3.4)	(7.5)		
	460	220	560			J3A	12IAV54J4A					
5 Sec Time Delay same as IAV54E	115 230	55 110	140 280			12IAV55C1A C2A	12IAV55C4A C5A					
except 2 N.C.	460	220	560			C3A	C9A					
30 Sec Time Delay	115	55	140	0.2/2	2 N.C.	12IAV55F1A						
TE C. T. D.L.	230 115	110	280 140			F2A 12IAV55H1A						
75 Sec Time Delay	113	33	140			IZIAVJJITTA						
Frequency Compensated		Т.					1					
5 Sec Time Delay at zero volts on No. 10 TDS. Compensated 30-90 Hz	115	55	140	0.2/2	1 N.C.	12IAV74A1A	*********	S2	13 (5.9)	" 17 (7.7)		
OVER- AND UNDERVOLTAGE (Device	No. 27/5	9)						-				
General duty; electrically separate con-	I											
tacts with target seal-in unit series	115	55	140	0.2/2	0.2/2			12IAV53K1A	12IAV53K4A		Ì	
with each contact; UV adjustable from 50 to 95% of OV tap setting. Time delay	230	110	280					K2A	K5A			
1.1 sec. at zero volts: 0.4 sec.	460	220	560	(2)		КЗА	KIIA					
at 2 x tap. setting.	115	55	140		-	12IAV53L1A	12IAV53L4A					
Automatic control schemes; same as IAV53K except target seal-in units are omitted	230	110	280			L2A	L5A		1			
	460	220	560	None		L3A						
Similar to IAV53K except target	115		140	110110	1 N.C.	12IAV53N1A		-	13	17		
seal-in units are omitted. Time delay 0.5 sec. at zero volts.	460	55 220	560		1 N.C. 1 N.O.	N3A		52	(5.9)	(7.7 <u>)</u> 		
General duty; common connection between	120	55	140			121AV69A1A	12IAV69A3A					
contacts; OV setting is independent of UV adjustment; UV adjustable from 60 to 95%	208	110	280	0.2/2		A4A			-			
of OV tap setting; target and seal-in unit in series with each contact.	240	110	280	(2)		A2A						
Automatic control schemes; same as IAV69A except target seal-in units are omitted	120 240	55 110	140 280	None		12IAV69B1A B2A	12IAV69B3A					
General duty; common connection between contacts; UV setting fixed at 95% or more	1		7.0	0.0.40	1	12IAV70A1A						
contacts; UV setting fixed at 95% or more of OV tap setting; target seal-in unit in	120 240	55 110	140 280	0.2/2 (2)		A2A		İ				
series with each contact; adjustable time	240		200	(-)		7.27.						
delay 30 seconds max. on complete loss of V.		L			-	10141/70014	10/41/70004					
Automatic control schemes; same as IAV70A except target seal-in units are omitted	120 240	55 110	140 280	None	,	12IAV70B1A B2A	12IAV70B3A					
Frequency Compensated												
ricdocuel combourance	-	·		0.2/2				1				
				0.2/2		10/41/72 4 1 4						
General duty; same as IAV53K except Frequency Compensated. 30-90 Hz	115	55	140	0.2/2 (2)	1 N.C.	12IAV73A1A		S2	13 (5.9)	17 (7.7		

IAV

Time Delay Voltage Relays

GE Protective Relays

DIAGRAMS AND CHARACTERISTICS

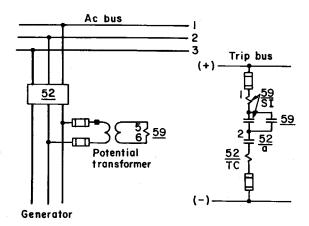


Fig. 2. Typical external for Type IAV51A used for overvoltage protection.

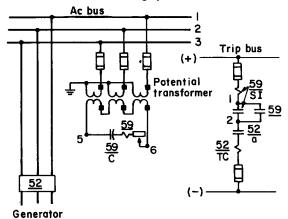


Fig. 4. Typical external for ground fault protection 3ph.
Ungrounded system Type IAV51D

Fig. 6. Typical external for ground fault protection of an ac rotating machine Type IAV51D or 51K

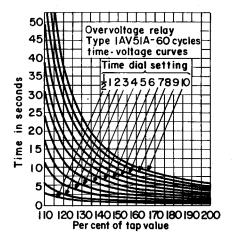


Fig. 3. Typical Time Voltage curve for Types IAV51A, 71 and 72

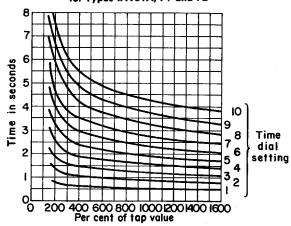


Fig. 5. Typical Time Voltage curve for Types IAV51D and 51K

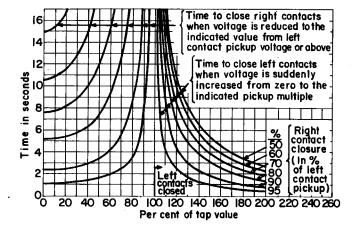


Fig. 7. Typical Time Voltage curve for Types IAV53K, 53L, 73A and 73B

Phase-sequence and Undervoltage Relays

GE Protective Relays

Ac Undervoltage, Open or Reverse Phase Protection

DESCRIPTION

The Type ICR is a three-phase voltage operated induction-disk time delay relay designed to respond to phase sequence, open phase or undervoltage. Each ICR relay includes a basic induction-disk unit and may also include dual rated target seal-in units.

The ICR51A relay has a single circuit closing contact which opens on undervoltage or reversed-phase sequence, and a time dial for selecting the time delay for the contact closing. This relay does not have a target or seal-in unit. When the relay is adjusted to open its contact at 75 percent of rated voltage, the time required to close the contact, with rated voltage applied and a time dial setting of 10, is 10 seconds.

The ICR53 and ICR54 relays have single pole double throw electrically separate contacts. The left contact opens on undervoltage or reverse phase sequence and the right N.C. contact may have a target seal-in unit. Also, forms are available with two target seal-in units or no target seal-in units. These relays do not have a time dial.

In general the ICR53A, 53B and 53C relays will provide a time delay of 1.2 seconds if adjusted for 90 percent pickup and 80 percent dropout when the voltage is suddenly dropped from the rated value to zero.

The ICR53D is similar to the other ICR53 relays except it provides a long time delay of 3 seconds when the applied voltage is suddenly dropped to zero.

For a very short time delay of 0.17 second, the ICR54A and 54B relays are available. Otherwise, they are similar to the ICR53A and ICR53B.

Case Construction

The ICR53A is furnished in a single-end (S1) drawout case.

The Types ICR53 and ICR54 contain a contact that is closed when the relay is deenergized. For this reason, these relays are supplied in double-end (S2) drawout cases. The external connections are such that the relay coils are energized when either the upper or lower connection plug is put in place. The relay will, therefore, have time to open

its closed contact before the second connection plug can be put in place. It is necessary to have both plugs in place before the contact circuits are completed. Refer to Figure 3.

APPLICATION

Type ICR relays are used principally for protection of ac machines from undervoltage and, when starting, from open-phase or reverse-phase sequence. They are also recommended for other applications, such as automatic throw-over equipments, where it is desired to check the presence of three-phase voltage for correct phase sequence.

The most extensive application of these relays is in metal-clad switchgear, where they are used to prevent the starting of a machine, if the phase and voltage conditions of the circuit are not correct. They also function to stop the machine, if the voltage across the relay terminals falls below a predetermined value. Usually, these relays will not disconnect a running motor, if one phase of the supply is open-circuited, because the motor will supply three-phase potential to the relay even with one phase disconnected from the source. However, these relays will prevent the starting of the motor when one phase is open, and will also prevent starting in the wrong direction, if the phase sequence is reversed.

Time delay of contact operations may be necessary to prevent shutdown on temporary dips in voltage. Delay may also be necessary to attain proper sequential operation with other devices in the control circuit. Timing is determined by the calibration settings of the right and left contacts for all ICR relays except the ICR51A which has one normally open contact and a time dial adjustment.

OPERATION

For these relays the induction disk is actuated by a wattmetric type operating unit. The voltage coils are located above and below the operating disk. Phase shift is provided in each coil by a series capacitor to produce a split-phase field which develops torque on the induction disk.

(Photo 8043216)

Fig. 1. Type ICR53C—Phase Sequence and Undervoltage Relay (out of case)

BURDENS

The burdens imposed by the two potential circuits at rated voltage and 60 Hertz are as follows:

Volts	Coil Circuit	Watts	Vars® ,	VA	PF
120	5-6	2.15	4.70	5.20	0.41
120	7-8	0.66	2.30	2.40	0.27
240	5-6	3.55	13.15	13.3	0.26
240	7-8	0.41	6.38	6.40	0.06
480	5-6	2.83	23.8	24.0	0.12
480	7-8	0.45	23.0	23.0	0.02

① Capacitive

CONTACT RATINGS

The current carrying rating of the ICR contact circuit is determined by whether the relay has a seal-in unit and by the tap used on the seal-in coil. Without a seal-in unit the relay contacts will close and carry 30 amperes for tripping duty and 2 amperes continuously at control voltages of 250 volts dc or less. Refer Section 16 for contact data for relays that include target seal-in units.

When the contacts of the induction unit are not bypassed by the seal-in unit contacts, they may try to interrupt the circuit. The interrupting rating of the contacts for non-inductive leads are as follows:

Make and	Ac	Dc
Interrupt at:	Amps	Amps
125 volts	1.50	0.30
250 volts	0.75	0.15

Dimensions	Section 16
How to Order	. Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16

ICR

Phase-sequence and Undervoltage Relays

GE Protective Relays

SELECTION GUIDE

Ac Range in		Range	Torget	Model		Approx Wt Lb (kg				
	①N.C. Right Co Range in % of N.O. Contact	Factory Setting Volts	actory Range in % etting of Rated V.		Target Seal-in Unit 0.2/2 Amp	60 Hertz	50 Hertz	Case Size	Net	Ship
Type ICR51	A— Adjustable Time	- 10 Secon	ds Max. on No.	10 Time D	ial (1-N.O.)		<u> </u>			•
120 208 240 480			65-95	90 164 180 360		12ICR51A21A A28A A22A A23A	12ICR51A24A A27A A25A A26A	S1	12 (5.4)	16 (7.3)
Type ICR53	A— 1.2 Sec. Time De	lay on Los	of Voltage. 1 N	1.O. and 1	N.C 1 SI U	nit		_		<u>, </u>
					Tai	rget SI Unit in N.C. (Circuit only			
120 208 240 480	75-90	96 166 192 384	75-100	108 187 216 432	Yes	12ICR53A1A A8A A2A A3A	12ICR53A4A A7A	52	13 (5.9)	17 (7.7)
Type ICR53	B- 1.2 Sec. Time De	lay on Loss	of Voltage. 1 N	I.O. and 1	N.C No SI	Units				
120 208 240 480	75-90	96 166 192 384	75-100	108 187 216 432		12ICR53B1A B6A B2A B3A	12ICR53B8A B4A	S2	12 (5.4)	16 (7.3)
Type ICR53	C— 1.2 Sec. Time De	lay on Loss	of Voltage. 1 N	I.O. and 1	N.C 2 TSI	Units				
					Targe	t SI Unit in N.C. and	I N.O. Circuit		1	
120 240 480	75-90	96 192 384	75-100	108 216 432	Yes	12ICR53C1A C3A C4A		\$2	13 (5.9)	17 (7.7)
Type ICR53	D— 3 Sec. Time Delo	ıy on Loss d	of Voltage. 1 N.	D. and 1 N	.C No TSI	Units				
120 208	75-90	96 166	75-100	108 187		12ICR53D1A D6A		\$2	12 (5.4)	16 (7.3)
Type ICR54	A 0.17 Sec. Time D	elay on Lo	ss of Voltage. 1	N.O. and	1 N.C 1 TS	l Unit			-	
					Tai	get \$1 Unit in N.C. (Circuit only			
208 240 480	75-90	96 166 192 384	75-100	108 187 216 432	Yes	12ICR54A1A A8A A2A A3A	12ICR54A7A A9A	S2	13 (5.9)	17 (7.7)
Type ICR54	B— 0.17 Sec. Time D	elay on Los	is of Voltage. 1	N.O. and 1	N.C No T	SI Units				
120	75-90	96 192	75-100	108 216		12ICR54B1A B2A		\$2	12 (5.4)	16 (7.3)

① The right contacts are opened when the relay is energized, and will close when the voltage drops to values equal to, or less than, those listed in this column.

CONNECTION DIAGRAMS

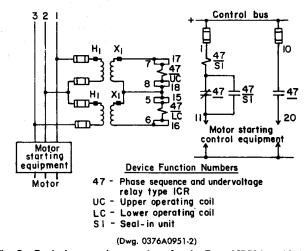


Fig. 2. Typical external connections for the Type ICR53A or ICR54A (Ac machine protection)

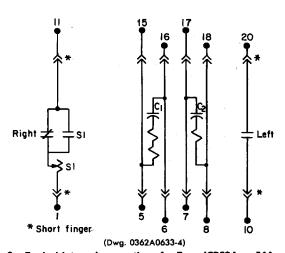


Fig. 3. Typical interant connections for Type ICR53A or 54A relay

② The left contacts, which are closed when the relay is energized, will open when undervoltage occurs. If single-phase or reverse-phase sequence exists, these contacts will not close when the relay is energized.

II V

Time Delay Voltage Relays

GE Protective Relays

DESCRIPTION

The Type IFV relays are single phase induction disk relays designed to respond, with time delay, to an increasing voltage. Some models are frequency compensated, and some include an instantaneous unit (hinged armature type).

The type IFV relays are supplied with two eletrically separate contacts. One of these contacts which operates the target seal-in unit is on the induction disc unit and can be used as a trip contact; the second contact of the seal-in unit can be used for alarm or remote indication.

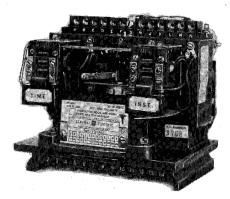
APPLICATION OVERVOLTAGE RELAYS

Type IFV overvoltage relays are used for protection against simple overvoltage, but other applications are also common. They are applied to ground detection, both on feeders and on ac generators, and they are also used in timed switching arrangements, where their dependability and accuracy make them preferable to purely mechanical timing relays.

For protection against overvoltage, use the IFV51AD relay (Fig 2). For instantaneous protection as well as time delay, use the IFV71BD.

For the detection of grounds on ungrounded three-phase systems, two methods are in general use. One measures the zero sequence potential (Fig. 4), and the other measures the actual voltage between the system neutral and ground (Fig. 6.)

For the circuit of Figure 4, use Type IFV51DD, a low pickup relay which has


its operating circuit tuned to the rated frequency. The potential transformers used in this circuit are connected grounded-Y primary, broken-delta secondary. The primaries should have ratings equal to the line-to-line voltage of the system, and the secondaries can have ratings of either 67 or 115 volts.

Select a relay model with a continuous rating of three times the potential transformer secondary voltage. This is necessary because, when a ground occurs, the zero sequence voltage may be up to three times the normal transformer secondary voltage. Thus, with a potential transformer secondary rated 67 volts; use a 199-volt relay coil.

For ground fault protection of ac rotating machines, use a circuit similar to that shown in Figure 6 applying Type IFV51DD or IFV51KD. These are low-pickup relays whose coil circuits are tuned by capacitors to their rated frequencies. The circuits are thus rendered only one-eighth as sensitive to the third harmonic as they are to the rated frequency.

In Figure 6, a distribution transformer is connected between the machine neutral of the generator and ground. Normally there is no voltage on the transformer but during a fault, there is a voltage with a worst-case magnitude equal to the phase-to-ground value.

Greater sensitivity can be obtained by choosing a distribution transformer with higher secondary voltage. In such a case, the relay will not carry the fault voltage continuously, and provision must be made

(Photo 8043453)
Fig. 1 Type IFV7 1BD overvoltage relay
(out of case)

to de-energize the operating coil using an auxiliary relay. The short-time rating for both IFV51DD and IFV51KD is 360 volts for 10 seconds.

FREQUENCY COMPENSATION

The following Type IFV relays are frequency compensated overvoltage relays—IFV71AD and IFV71BD.

The frequency compensation range of these relays are 50 to 150 percent of system frequency. A typical application is on systems supplied by hydro-generators, where the frequency tends to increase when faults occur. Frequency compensation is provided by an ac circuit across the wound shading coils of the induction disk operating coil and core unit.

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16

Time Delay Voltage Relays

GE Protective Relays

CHARACTERISTICS

The IFV51DD and IFV51KD relays are single-phase overvoltage relays of induction disk construction that may be used to provide very sensitive protection for overvoltage conditions.

Relay Type	Continuous Rating (Volts)	Pickup Range Continuously Adj. (Volts)
IFV51DD	120	9.5-42
	208	14.5-65
	360	26.0-115
IFV51KD	69	5.0-22

For the minimum and maximum taps shown in the list below, the following intermediate taps are available for both the IFV51AD1A and IFV71AD1A.

Tap f	lange	Taps Available					
50 Hz	60 Hz	50Hz	60Hz				
50-250	55-280		55, 64, 70, 82, 93, 110, 128, 140, 164, 186, 210, 240, 280				

TRIPPING CIRCUITS AND **CONTACT RATINGS**

The current carrying rating of the contact circuit is determined by whether the relay has a seal-in unit and by the tap used on the seal-in coil. Without a seal-in unit the relay contacts will close and carry 30 amperes for tripping duty and 2 amperes continuously at control voltages of 250 volts dc or less. Refer Section 16 for data on target seal-in units.

SELECTION GUIDE—Type IFV

		Pi	Pickup Range Volts			Taraet	Target Seal-in	Model N	lumbers	_	Approx V	Vt. lb (kg)
General Description	Rated (Volts)	50	50 Hz		60 Hz					Case		· ·
Description	(, , , , ,	Min	Max	Min	Max	(Amps)	Contacts	(50 Hz)	(60 Hz)	3.25	Net	Ship
OVERVOLTAGE (DEVICE No. 59)							_					
General duty, overvoltage and control switching. Time delay .5 to 11.0 seconds at 1.6 times tap setting.	240	50	250	55	280	0.2/2.0	2 N.O.	12IFV5	IADIA	C1	8 (3.6 kg)	14 (6.3 kg)
Low Pick-up	,											
Ground detection on 3-phase systems and on generator stator windings. Time delay for a frequency of 50 Hz 0.8-9.0 seconds and at 60 Hz 0.9-9.0 seconds at 200% tap setting.	120① 208① 360 120① 208① 360	9.5 14.5 26.0	42 65 115	9.5 14.5 26.0	42 65 115	0.2/2.0	2 N.O.	12IFV51DD4A 5A 6A	12IFV51DD1A 2A 3A	Cl	8 (3.6 kg)	14 (6.3 kg)
	69 ①	5	22	5	22	0.2/2.0	2 N.O.	12IFV51KD2A@	12(FV51KD1A@	Сī	8 (3.6 kg)	14 (6.3 kg)
Frequency Compensated							: :					
Frequency sensitive applications. Frequency compensation range are 50 to 150 percent of system frequency.	240	55	280	55	280	0.2/2.0	2 N.O.	12IFV71AD1A		C1	8 (3.6 kg)	14 (6.3 kg)
Frequency compensated; instantaneous unit added, also frequency compensated. For hydrogenerator applications; general duty for ac generator overvoltage protection and voltage regulator backup. 0.45 to 11 second time delay.	240	55	280	55	280	0.2/2.0	2 N.O.	12IFV71BD1A③ 2A②		C1	8 (3.6 kg)	14 (6.3 kg)

①IFV51DD, 51KD are 360 volts at a 10 second rating. ②Inst. unit adjustable 180-300 volts. ③Inst. unit adjustable 120-200 volts.

Tincludes external capacitor.

IFV

Time Delay Voltage Relays

GE Protective Relays

DIAGRAMS AND CHARACTERISTICS

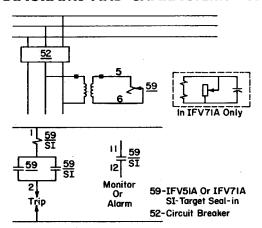


Fig. 2. Typical external for Types IFV51AD and IFV71AD used for overvoltage protection (273A9038)

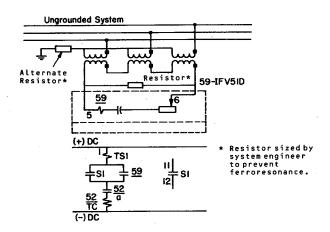


Fig. 4. Typical external for ground fault protection 3ph. Ungrounded system Type IFV51DD (275A2089)

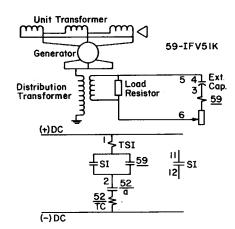


Fig. 6. Typical external for ground fault protection of an ac rotating machine Type IFV51KD (275A2090)

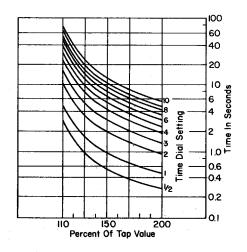


Fig. 3 Typical time voltage curve for Type iFV51AD (0275A2075)



Fig. 5. Typical time voltage curve for Types IFV51KD and IFV51DD (0273A9519)

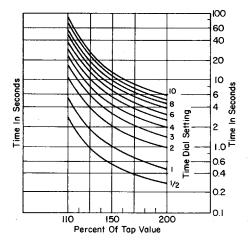
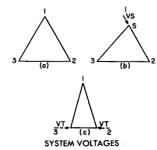


Fig. 7. Typical time voltage curve for Type IFV71 (0275A2074)

Voltage Unbalance Relays

GE Protective Relays


DESCRIPTION

High-speed, sensitive, three-phase voltage unbalance relay

The NBVIIA relay is a high speed sensitive three-phase voltage unbalance relay which is capable of detecting a small voltage unbalance in a three-phase system. The NBV11A when applied as a protective device is normally used in conjunction with a time-delay relay. One NBV11A relay and one timing relay are required at each terminal.

APPLICATION

The principal application of the NBV11A relay is to protect three-phase motors from the damage which may be caused by single-phase operation. When one fuse blows in a three-phase supply to a group of motors, these motors will continue to run on single-phase power. At this time the voltage unbalance will be small since the motors will maintain nearly full voltage across the open phase and a sensitive voltage unbalance relay is required to detect the single-phase power so the NBV11A relay is used to trip the supply breaker or to sound an alarm. Since the NBV operates on a percentage of the unbalance in line voltages, it will detect a single-phase condition on light load as well as on heavy load. The NBV is usually connected to a bus and it will effectively protect a group of many motors when the open circuit is between source and the bus. The NBV11A is a high speed relay and a timing relay should be used to prevent false tripping or alarm. When undervoltage tripping is permissible, the scheme using a 27 device should be used. If a reliable

- Balanced conditions Unbalanced by shift of one corner Unbalanced by shifting two corners toward each other along vector between them.

$$V_N = \frac{1}{3}(V_{12} + \alpha^2 V_{23} + \alpha V_{31})$$
where $V_N = \text{Neg. Sequence Component}$

 $a = 1[120^{\circ}]$ $a^2 = 1[240^{\circ}]$

Fig. 1. System voltages under balanced and unbalanced conditions

Fig. 2. NBV voltage unbalance relay

source of dc power is available, a dc timing relay such as the SAM may be used. In the above application the relay also provides protection against reverse phase-sequence operation.

CONTACT RATINGS

The relay contact ratings are as shown in

TABLE I

Rating	Continuous	Interruption Current (Amps)		
	Current (Amps)	Ind	Non-ind	
125 V-DC 250 V-DC 115 V-60 cy 230 V-60 cy	1.0 1.0 1.0 1.0	0.3 0.01 2.0 1.0	0.75 0.2 4.0 2.0	

BURDENS

The three-phase burden of the NBV relay does not divide equally among the potential transformers that supply the relay. Thus, Table II illustrates how this burden divides when the relay is supplied from 3 potential transformers that are connected in wye with relay stud 5 connected to PT #1, relay stud 6 to PT #2, and relay stud 7 to PT #3.

Table II gives the burden division when the relay is supplied from two potential transformers connected in open delta. It is recommended that terminal 6 of the relay be connected to the "V" point of the deltaconnected potential transformers.

Pundana Tabla II

buraens—	-i abie ii									
Eroguency			Current (MA)			Burden per PT (VA) Wye-connected PTS	3	Burden per PT (VA) Open Delta PTS		
Volts Frequency (Hz)	15	16	1,	PT #1 (Studs 5-6)	PT #2 (Studs 6-7)	PT #3 (Studs 7-5)	PT #1 (Stud 5)	PT #2 (Stud 7)		
120 120 208 208 240	60 50 60 50	77 40 38 32 80	115 95 59 49 120	38 66 23 19 40	5.32 2.77 3.96 3.30 2.70	7.97 6.57 7.07 5.90 4.00	2.63 4.57 2.76 2.30 1.30	9.23 4.80 7.90 6.60 4.60	4.56 7.82 4.78 3.98 2.28	

SELECTION GUIDE

Ra	Ratings Model Number		Pickup	Ra	inge V)	Case	Approx Wt in lbs (kg)		
Voltage	Frequency (Hz)	Model Number	(VN)Û	vs	VT	Size	Net	Ship.	
120 208 240	60	12NBV11A1A A3A A4A	5.8-11.5 10-20 11.5-23	10-20 17-34 20-40	5.8-11.5 10-20 11.5-23	S1	15(6.8)	22(10)	
120 208	50	A2A A5A	5.8-11.5 10-20	10-20 17-34	5.8-11.5 10-20				

NOTE: Harmonic filter - 60 Hz, 165A6788G1: 50 Hz, 165A6788G2

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	. Section 16
Relay Standards	

NGV

Voltage Relays

GE Protective Relays

WHERE TO USE

The Type NGV relay is a high-speed relay designed for calibration on decreasing voltage (drop-out), or increasing voltage (pick-up) and may be continuously energized at rated voltage. The NGV19 is a special relay available for application as a battery monitor.

The NGV is an instantaneous, voltageoperated, hinged-armature telephone type relay. It is available with one, two, or three independent units in one case. These units are designed for direct-current. Where the relays are to be applied to alternatingcurrent, a bridge-type circuit provides fullwave rectification for the coil circuit. See Fig. 2. In both the ac and dc versions, a zener diode in the coil circuit establishes a sharply-defined set point controlled by a rheostat that is mounted on the front of the relay.

Some specific applications for the undervoltage NGV relays are listed below:

- Instantaneous undervoltage detection for preferred emergency throwover control equipment.
- Ground fault detection for faultedphase selection on ungrounded systems.
- Phase fault detection for disabling telephone or telemetering services at stations with weak backfeed on carrier channels used for relay protection of other terminals.

For Type NGV17A, 17B, 17C, 18A, and 19A, the pick-up voltage is less than 5 percent higher than the dropout voltage. For all other type NGV relays, the pickup voltage is less than 10 percent higher than the dropout voltage. The voltage range from the beginning of the relay action to its completion is approximately 1 percent of the rated voltage. The relay pick-up time is

approximately 2 cycles and the drop-out characteristic is shown in Fig. 3.

The ac burden per element is 4 to 5 watts maximum.

The NGV19 relay is a time-delay, dc undervoltage relay with extra high dropout designed specifically to monitor the dc charging supply for a station battery and sound an alarm if this supply fails. The relay contains an instantaneous undervoltage unit connected to the station battery, and an auxiliary time-delay unit connected to the ac battery charging power supply.

This time-delay unit provides a minimum time delay of one-half second after the undervoltage unit operates. It is not sensitive to fluctuations in the ac supply since it will stay held-in down to 25 percent voltage. If the ac supply fails, however, the time-delay unit drops out and sounds the alarm without waiting for the battery voltage to decrease.

CONTACT RATING

Close and carry 30 amperes dc for tripping duty at 250 volts dc or less.

INTERRUPTING RATING

Volts	Amp (Inductive)	Amp (Noninductive)
24 dc	1.0	3.0
48 dc	1.0	3.0
125 dc	0.5	1.5
250 dc	0.25	0.75
69 50/60 Hz	1.0	3.0
120 50/60 Hz	0.75	2.0
208 50/60 Hz	0.5	1.0
240 50/60 Hz	0.5	1.0
277 50/60 Hz	0.4	0.8
480 50/60 Hz	0.25	0.4

NOTE: The inductive rating is based on the inductance of an average trip coil.

(Photo 8043189)

Fig. 1. Type NGV15 undervoltage relay

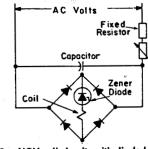


Fig. 2. NGV coil circuit, with diode bridge for ac application

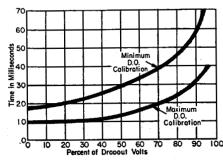


Fig. 3. NGV relay—time to close the N. C. contacts when voltage is suddenly reduced from 110% rated volts to value shown on graph

SELECTION GUIDE—DC

No. Units	Vale	Calibration Range	Model	Contacts		Model	Contacts		Model	Contacts		Case	Appro in lb:	ox Wt (kg)
Per Case	Case Volts Dropout Volts		Number	Comocis		Number	Comacis		Number			Size	Net S	Ship
1	24 48 125 250	19-27 38-54 100-140 200-280	12NGV17A5 A3 A2 A4	1 N.O. and 1 N.C.	① Back Conn.	12NGV17B1 12NGV17B2	1 N.O. and 2 N.C.	① Back Conn.	12NGV17C3 C1 C2	1 N.O. and 1 N.C.	Front Conn.	Molded	3(1.4)	5(2.3)
	24 48 125 250	18-24 38-54 100-140 200-280	12NGV18A4A A3A A2A A1A	1 N.O. and 1 N.C.	\$1 Case							\$1	10(4.5)	15(6.8)

① The molded case is similar to the HGA11 relay. Add "F" to Model No. for semi-flush mounting Example 12NGV17A2F.

Dimensions	Section	16
How to Order		
Instruction Books	Section	17
Target and Contact Data	Section	16
Relay Standards	Section	16

Voltage Relays

GE Protective Relays

SELECTION GUIDE—AC

		ating			Calibrated	on Dropout①			Calibrated	on Pickup®		1	Appr	ox Wt
No.			Contacts	Cal.	W/O Target	With Targ	get	Cal.	W/O Target	With Tar	get	Çase	in lb	ox Wt s (kg)
Units	Volt	Freq. (Hz)	(Per Unit)	Range (V)	Model Number	Model Number	Tar. Rat. (Amps)	Range (V)	Model Number	Model Number	Tar. Rat. (Amps)	Size	Net	Ship.
	69	60		40-58	12NGV15A30									
1	120 208 240 480	50/60	特辞	70-100 121-173 140-200 280-400	A21 A22 A23 A11							Molded △	3(1.4)	5(2.3
1	69 69 120 120 120 120 120 120 170 208 208 240 240	50/60	÷ ‡ ÷‡	40-58 40-58 8-16 35-50 35-50 70-100 70-100 80-120 100-140 121-173 121-173 140-200 140-200	12NGV13A14A A20A A11A A15A A12A	12NGV13B24A B28A B39A B43A B25A B21A B30A B29A B26A B22A B27A B23A	2.0 0.2 2.0 0.2 2.0 0.2 2.0 0.2 2.0 0.2 2.0 0.2 2.0					\$1	10(4.5)	14(6.8
2*	120 120 208 240	50/60	+ +++	70-100 70-100 121-173 140-200	12NGV12A11A A12A A13A	B11A 12NGV12B15A	2.0 0.2 					52	11(5)	16(7.3
3*	69 120 120 120 120 208	60	1111	40-58 70-100 70-100 70-100 121-173		12NGV11B18A B15A B11A	0.2 0.2 2.0	80-120 80-120 121-173		12NGV21B5A B1A B9A	0.2 2.0 0.2	S2	12(5.4)	18(8.2
-	69 120 208 240	50/60	+ + +*	40-58 70-100 121-173 140-200	12NGV11A20A A11A A12A A13A									

STATION BATTERY MONITORING

Number of Units	Volts	Calibration Range Dropout	Ac Supply Voltage		Model	Time Delay	Çase	Approx Wt in lbs (kg)		
per Relay	Dc	Volts	Volts	Hertz	Number	(sec)	Size	Net	Ship.	
i	48 125 125 125 125 250 250	40-54 54-86 100-140 100-140 100-140 200-280 200-280	120 120 120 208 240 120 240	50/60	12NGV19A5A A8A A1A A2A A3A A4A A13A	0.5	S1.	10(4.5)	15(6.8)	

D.C. BUS GROUND DETECTION

		Maximum	Cont	acts			Approx Wt in lbs (kg)		
Number of Units per	Volts Dc	Resistance to Ground to	Left Unit Minus Bus	Right Unit Plus Bus	Model Number	Case Size			
Relay		Operate(K ohms)	Ground	Ground		3.20	Net	Ship	
2	250 125 48 24	30 15 5 1.25	1 N.O.	1 N.O.	12NGV29A1A A2A A3A •A4A	SI	10 (4.5)	15 (6.8)	

 ²⁻unit and 3-unit relays have two targets.
 In two-unit and three-unit relays, the normally open contacts are wired out in series, and the normally closed are wired out in parallel.

² In these three-unit relays, the normally closed contacts are wired out in series, and the normally open are wired out in parallel.

[△] The molded case is similar to HGA11. Add suffix "F" to model number for semi-flush mounting. Example: 12NGV15A—F.

gg)

Instantaneous Voltage Relays

GE Protective Relays

For High-speed Overvoltage Protection of Ac and Dc Circuits and Dc Undervoltage Protection

DESCRIPTION

Type PJV relays consist of one or more units mounted in a molded case or in a drawout relay case. The units are plunger type relays with the armature adjustable on the plunger rod to vary the pickup. The movable contacts are fastened directly to the armature assembly on each side of the calibrating tube.

APPLICATION

These relays are high speed, plunger-type voltage relays used where instantaneous operation is required. Different model numbers are available for:

Ac overvoltage

Dc overvoltage

Dc undervoltage

Overvoltage—These relays are calibrated in terms of the voltage required to close the N.O. (normally open) contacts and open the N.C. (normally closed) contacts on increasing voltage when the pickup setting is reached. The target, when available, operates for pickup operations only.

Undervoltage—These relays are calibrated in terms of the dc voltage required to open the N.O. (normally open) contact and close the N.C. (normally closed) contacts on decreasing voltage when the dropout setting is reached. They may be used where instantaneous operation is required because of low-voltage conditions caused by faults, overloading, blowing of fuses, battery failure, or sequential control operations. The target, when available, operates for dropout operation only. For ac undervoltage applications, the NGV relay is recommended.

RELAY CHARACTERISTICS

Pickup Times for ac overvoltage relays are approximately 1 cycle at voltages of 1.5 times the pickup voltage setting.

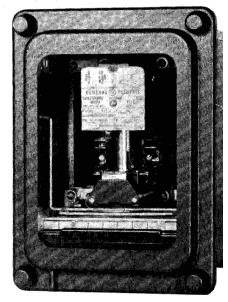
Reset Times for ac overvoltage relays are less than 2 cycles to close the normally closed contact at voltages of 80 percent or less of pickup voltage.

Continuous Rating: The PJV relay coils are continuously rated as specified on the name-

plate and will stand 10 percent overrated voltage continuously without injury to the coil with the plunger set for any position within the calibration range. Ratings for continuous operation on a are for the non-picked-up position only. However, the limitation is mechanical, not thermal, and the relay life expectancy under continuously picked-up conditions is a matter of months. If the relay application is such that continuous operation in the picked-up position is anticipated, then the type NGV relay should be used.

For certain molded case PJV11 relays for dc voltage applications, an external resistor is included for series connection with the operating coil to improve the relay performance.

Self Reset: All overvoltage models listed in this section have self-reset contacts.


The ac rated models will dropout between 90 and 95 percent of pickup volts while the dc rated models will dropout between 70 and 90 percent of pickup volts.

These standard percentage values are not adjustable and are for contact arrangements of one normally open and one normally closed contact.

When a dc undervoltage relay with 95 percent or better is required, the Type PJV17 is applicable. This relay has an auxiliary ac winding in addition to the main dc operating coil and its effect is to increase the percentage. The PJV17 can be used with battery chargers and voltage regulators.

Targets are mechanically operated by the movement of the relay plunger. Targets on overvoltage relays with a pickup voltage calibration operate when the voltage equals or exceeds the pickup voltage setting.

Targets on undervoltage relays with a dropout voltage calibration operate when the voltage is equal to or lower than the dropout setting.

(Photo 8007388)

Fig. 1. PJV11 single-unit relay, drawout construction

Molded and Drawout Case Construction are both available. The molded-case relays are surface mounted and back connected.

RATINGS OF CONTACTS

The current-closing rating of the contacts is 30 amperes. The current-carrying rating is 5 amperes continuously or 30 amperes for two seconds. Interrupting ratings are listed in the following table.

INTERRUPTING RATINGS IN AMP

	loninductive Circuits		oninductive ircuits
Volts	' Amperes	Volts	Amperes
115	5	24	5
115 230 460	1 1	24 48 125	1
• • •		250	0.3

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	
Relay Standards	Section 16

Instantaneous Voltage Relays

GE Protective Relays

SELECTION GUIDE—With Mechanical Targets

	Conti	nuous		Model	Number				Appro	ox. Wt.
No.		ing	Calibration	Overvoltage	Calibration	Undervoltage Calibrated		Case	in Lb	. (Kg)
Units	Volts	Freq. (Hz)	Range (Volts)	Calibrated in Pickup	Range (Volts)	Calibrated in Dropout	Contact	Size	Approx in Lb Net 2.5 (1.1) 8 (3.6)	Ship
	24 48 62.5 125 250	Dc	10-31 20-62 25-80 50-160 100-320	12PJV11A12 A13 A43 A10 A11①	10-21 20-42 25-54 50-109 100-218	12PJV11BB6① BB4① BB3① BB2① BB1①				
	67 115 230 460	60	60-93 70-160 140-320 280-640	12PJV11A19 A1 A2 A3				Molded		(1.8)
	115 230 460	50	70-160 140-320 280-640	12PJV11A4 A5 A6	••• ••• •••	•••••				
1	24 48 62.5 125 220 250	Dc	10-31 20-62 25-80 50-160 88-282 100-320	12PJV11AM6A AM4A AM3A AM2A AM7A AM1A	10-21 20-42 50-109 100-218	12PJV11BA5A BA4A BA2A BA1A				
	35 67 115 230 460	60	15-45 41-93 70-160 140-320 280-640	12PJV11AF21A AF16A AF1A AF2A AF3A			© Code 20, 11, or 02	SI	8 (3.6)	12 (5.4)
	115 230 60	50		12PJV11AF4A AF5A AF6A	•••					<u>.</u>
2	115 230 460	60	70-160 140-320 280-640	12PJV11AH1A AH2A AH3A				S2	10	15 (6.8)
•	115 230 460	50	70-160 140-320 280-640	12PJV11AH4A AH5A AH6A				52	(4.5)	(0.8)
3	67 115 230 460	60	41-93 70-160 140-320 280-640	12PJV11AS7A AS1A AS2A AS3A				M2	14	19
J	115 230 460	50	70-160 140-320 280-640	12PJV11AS4A AS5A AS6A						

HIGH DROPOUT (95 PERCENT)

No.	سعا لنفث		Dropout Calibration	Aux.	Winding	Model	Aux.	Winding	Model	Aux.	Winding	Model	Cont.	Case	Appro in Lb	x. Wt. . (Kg)
Units	Volts	Freq. (Hz)	(Volts Dc)	Volts	Freq. (Hz)	Number	Volts	Freq. (Hz)	Number	Volts	Freq. (Hz)	Number	COIII.	Size	Net	Ship
1	12 24 32 48 125 250	Dc	6-12.5 9-25 12-33.3 18-50 50-130 100-260	115	50/60	12PJV17A27 A12 A28 A1 A2 A8	230	50/60	.12PJV17A19 A17 A15 A20	460	50/60	12PJV17Ä13	© Code 11 (Only)	Molded	4 (1.8)	7 (3.2)
	24 48 125 250	Dc	9-25 18-50 50-130 100-260			12PJV17B5A B1A B2A B7A			12PJV17B3A B6A B4A				. ,,	\$2	10 (4.5)	15 (6.8)

① Includes an external resistor. ② Code 20 = 2 N.O. contacts. Code 11 = 1 N.O. and 1 N.C. contact. Code 02 = 2 N.C. contacts. Code 22 = 2 N.O. and 2 N.C. contacts.

(gg)

STV

Overexcitation Relays

GE Protective Relays

For Overexcitation Protection of Transformers and Generators

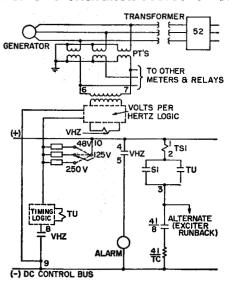


Fig. 1. External connections for the Type STV11A relay

DESCRIPTION

The Type STV relay is a single-phase static overexcitation relay. It consists of an overexcitation sensing unit which has a linear volts per hertz pickup characteristic (Fig. 2), and a timing unit to provide a definite time before initiating some protective action. A target seal-in unit is also provided to protect the timing unit contacts during tripping duty.

APPLICATION

The Type STV relay is designed specifically for equipment protection in case of overexcitation. Overexcitation of a generator or power transformer may occur during start-up, shutdown, or as a result of remote load rejection. As as result, overheating due to core saturation within a very short time may cause severe damage. This relay, employing a constant volts per hertz pickup, recognizes overexcitation and initiates some appropriate action to protect the equipment.

Although voltage regulators are available with voltage-frequency characteristics desirable for overexcitation control, the STV relay is recommended for alarm and backup protection or primary protection in case of regulator failure.

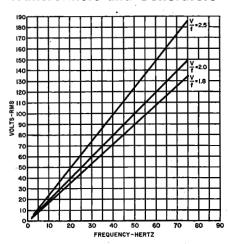
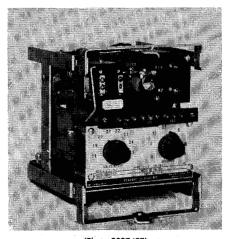



Fig. 2, Pickup volts vs. frequency, Type STV relay (60 Hz models)

(Photo 8037497)

Fig. 3. Type 12STV11A1A relay, front view (out of case)

CONTACT RATINGS

Timi	ing Unit (TU)			Volts/Hz Unit (VHz)							
Target Seal-in Ratings	Current Tripping	Current Continuous	Volts	Hertz	Current Inductive®	Current Non-inductive					
0.2/2.0	5.0	0.4	48 125	dc dc	1.0 0.50	3.0 1.5					
2.0/and above	30	4.0	250 115 230	dc 60 60	0.25 0.75 0.50	0.75 2.0 1.0					

1 Inductance of average trip coil.

Note: Current ratings are listed for voltages not in excess of 250 volts dc.

SELECTION GUIDE

Rai	ting	Oper. Range	Pickup Adj. Range	Time Dc		Target and Seal-in	Model	Case	Approx. Wt. in Lb (kg)	
Volts	Freq. (Hz)	(Hz)	(V/Hz)	(Sec.)	(Volts)	(Amps Dc)	Number	Size	Net	Ship
120	60	15-72	1.8-2.5	0.5-15.0 2.0-60.0 0.5-15.0 2.0-60.0	48/125/250	0.6/2.0 0.6/2.0 0.2/2.0 0.2/2.0	12STV11A1A A2A A4A A5A	,		
120 120 100 110 120 120 120 110	~50	15-72	2.2-2.9 2.2-2.9 1.8-2.5 2.2-2.9 2.2-2.9 2.2-2.9 1.8-2.5	0.5-15.0 0.5-15.0 0.5-15.0 0.5-15.0 2.0-60.0 2.0-60.0 2.0-60.0	48/125/250 48/110/220 48/110/220 48/125/250 48/125/250 48/110/220 48/110/220 48/125/250	0.6/2.0 0.2/2.0 0.2/2.0 0.6/2.0 0.6/2.0 0.2/2.0 0.6/2.0 0.2/2.0	A3A A6A A7A A8A A9A A10A A11A	S-1	15 (6.8)	18 (8.2)

BURDENS

The ac burden is approximately 0.6 voltamperes.

Dc Burden

Valts	Watts									
Volts	Timer not	Timer								
Dc	Energized	Energized								
48	1.10	5.8								
125	2.99	16.0								
250	6.00	34.5								

REFERENCES:

Dimensions	. Section	16
How to Order	Section	1
Instruction Books	. Section	17
Target and Contact Data	. Section	16
Relay Standards		

Voltage and Frequency Relays

SFF

Substitution List

GE Protective Relays

Original Relay Number	Closest* Superseding Relay Number
SFF21A1A	SFF201B1A
SFF21A2A	SFF201B1A
SFF21A3A	SFF201B1A
SFF21A4A SFF21A5A	SFF201B1A SFF201B1A
SFFZIAJA	SFF2UIDIA
SFF21A6A	SFF201B1A
SFF21A7A	SFF201B1A
SFF21A8A	SFF201B1A
SFF21A9A SFF21A10A	None None
SFF21A10A	None
SFF21A11A	SFF201B1A
SFF21A12A	SFF201B1A
SFF21A13A	SFF201B1A
SFF21A14A	SFF201B1A
SFF21B-All Forms	None
SFF21H-All Forms	SFF201B1A
SFF22A-All Forms	SFF202B1A
SFF22C1A	SFF202B1A
SFF22E1A	SFF202B1A
SFF22F1A	SFF202B1A
SFF23C-All Forms	SFF201B1A
SFF31A-All Forms	SFF201B1A
SFF31C1A	SFF201B1A
SFF31D1A	SFF201B1A
SFF32A-All Forms	SFF202B1A
SFF32C1A	SFF202B1A
SFF33A1A	SFF201B1A
SFF33C1A	SFF201B1A
SFF201A1A	SFF201B1A
SFF202A1A	SFF202B1A
SFF204A1A	SFF204B1A

^{*}Note: The new SFF200-series relays are a new design digital relay, by its very design being different than the earlier SFF20-series and the SFF30-series. This difference is not only in the connection points, but in some instances also in the case size.

SFF200

Static Digital Frequency Relays

GE Protective Relays

Static Relay for High-speed Detection of Underfrequency or Overfrequency Conditions

DESCRIPTION

Type SFF200 relays are digital frequency relays designed to operate when the system frequency changes to a predetermined level. They may be set for over, under-, or restore-frequency operation. Versions are available with one, two, or four frequency points independently settable for function, frequency value, and output delay.

The setting range is 40 to 79.9 Hz in 0.01 Hz steps. Detection of overfrequency or underfrequency levels for 3 cycles will result in an output in 0 to 1.55 seconds delay (0.05 second steps). Detection of system frequency above restore frequency setting for 3 cycles will result in an output prolonged by 0 to 1.55 seconds.

A rate of change feature on the multifrequency models, when enabled, will produce an output at the higher of two adjacent underfrequency setpoints if the next lower frequency setpoint is reached before the higher setpoint times out.

An Ac undervoltage function will cutoff all outputs whenever the input voltage is less than its setting. The function is adjustable from 35 to 100% of 120 volts (in 5% steps). It will drop out in ½ cycle and pickup in 1 cycle. The SFF200 relays may be powered from either a Dc or Ac control source (37-280 Vdc or 45-132 Vrms 50/60 Hz). However, when the restore frequency mode is used, a restore enable contact input requires Dc control power.

All adjustments are front panel accessible without removing the nameplate. These include: frequency, mode of operation, time delay, undervoltage cutoff, and rate of change "in" or "out" (multi-frequency models only). All above adjustments are per measurement point except undervoltage cutoff.

Indications are provided on the front panel for:

IN SERVICE (green LED) = Control power and Startup Ok (normally on) [1 per relay];

TRIP F (#) (red LED) = Freq (#) output (trip current operated and latched until reset) [1 per setpoint];

TRIP RoC (red LED) = Rate of change caused freq (#) trip current operated and latched until reset [for F1 in SFF202; for F1, F2, F3 in SFF204];

TEST F (#) (amber LED) = Freq (#) detector output (self reset) [1 per setpoint];

TEST TB (amber LED) = Freq (#) output to trip bus (self reset) [1 per setpoint].

APPLICATION

The SFF200 series of frequency relays can be applied wherever an extremely stable device is required for the accurate detection of underfrequency or overfrequency conditions.

Underfrequency

The underfrequency trip feature of the SFF200 relays may be used in load conservation schemes where accuracy and repeatability of frequency measurement is important. If a system disturbance results in loss of generating capacity such that load exceeds generation, system frequency will start to decay and the system may be in danger of collapsing. Underfrequency relays distributed around the system can be used to detect this condition and to disconnect selected system load to compensate for the loss of generation. Such action must be taken promptly and must be of sufficient magnitude to conserve essential load and enable the rest of the system to recover from the underfrequency condition.

Since the SFF200 compares the period of three successive voltage waves with a crystal reference, distortions of this input voltage wave affecting its period may cause incorrect measurement. Longer time delay settings will make this less likely to occur.

It is generally not good practice to supply a relay from a potential source that is connected to one bus section while using that relay to disconnect load on another bus section. For example, a frequency relay connected to a motor bus may see the frequency decaying faster than the voltage and produce a trip output. If the undervoltage cutoff does not coordinate with the underfrequency delay in such a relay, it could inadvertently disconnect load on a separate bus section. When an unattended substation with a large amount of motor load is isolated from the system, a load shedding scheme may see the frequency decaying faster than the voltage due to the motor load and initiate a trip and lockout. The undervoltage cutoff feature coordinated with the underfrequency delay in the SFF200 can be used to prevent such inadvertent operation.

Where an industrial installation is tapped off a power company transmission circuit that utilizes high speed automatic reclosing, an SFF200 relay could be used at the industrial location to prevent motor/generator damage which might result from

Fig. 1. Type SFF200 static digital frequency relay

reclosing to the system out of phase. The relay would detect the drop in frequency while the transmission breaker is open and trip the industrial incoming breaker before reclosing could occur.

Rate of Change

This feature will allow load to be shed faster if the frequency decays at a rate faster than was anticipated when the delay timer settings were determined.

Overfrequency

The overfrequency function may be used anywhere that it is desired to detect an overfrequency condition, e.g., to protect a generator against sustained overfrequency beyond rating due to inadvertent load rejection.

Dimensions	Section	16
How to Order	Section	1
Instruction Books	Section	17
Target and Contact Data	Section	16
Relay Standards	Section	16

SFF200

Static Digital Frequency Relays

GE Protective Relays

Overfrequency (Cont'd)

Another application is the removal of supplemental protection enabled only during off-line operation of a generator such as applied for protection against accidental energization on turning gear.

Load Restoration

Once the system frequency has recovered after a successful load shedding operation, the restore function in the SFF200 relay (if selected) can be used to initiate the load restoration process. A load restoration program usually incorporates substantial time delay, which must be provided by a timer external to the SFF200 relay. The time delay is related to the time required to add generation and the desire to stagger the reconnection of load allowing the system to stabilize after each step.

SPECIFICATIONS

Oc Control Voltage 37 to 280 Volts **Ac Control Voltage**

45 to 132 Vrms 50/60 Hz

Ac Measurement Input

42 to 132 Vrms 50/60 Hz

Settings

Frequency

Setpoint 40.00 to 79.99 Hz on 0.01 Hz steps Repeatability ±0.002 Hz

Timing

Setpoint 0 to 255 ms in 1 ms steps* 0 to 25.5 sec in 0.1 sec. steps Repeatability ±3% of setting

Undervoltage

Setpoint 35 to 95% in 5% steps (based on 120 Vrms)

Repeatability ±3% of setting

Rate of change (multi-setpoint models only)

Freq 1 to freq 2: IN or OUT Freq 2 to freq 3: IN or OUT Freq 3 to freq 4: IN or OUT **Environmental**

(a) Operating

-20 to +55 degrees C, 95% relative humidity (noncondensing) Note: The unit will not malfunction, nor be damaged, in ambient up to +65C.

(b) Storage

-40 to +75 degrees C, 95% relative humidity (noncondensing)

c) Surge

ANSI C37.90 (SWC and Fast Transient) IEC 255

GE RFI

Contact Ratings

Make and carry = 30 amps for 1 sec

Target Supervision Unit

0.1 amp operate level with less than 0.6 vdc drop at 30 amps

Burden

See Selection Guide below.

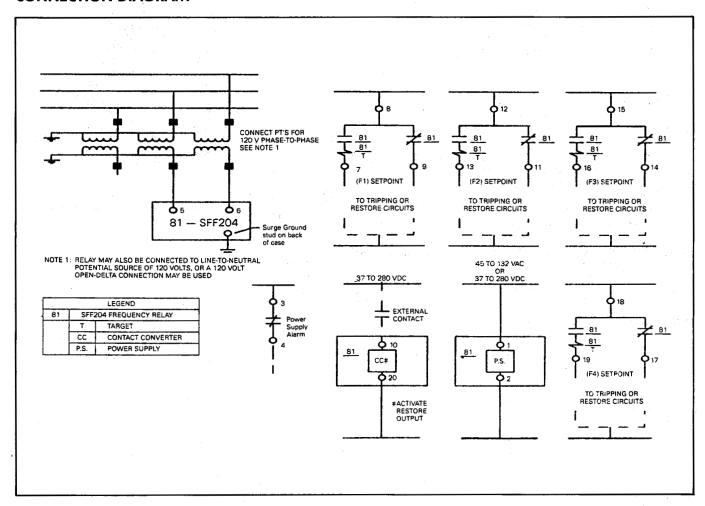
ACCESSORIES

A card extender (catalog number 215B8031G1) is available for testing the printed circuit cards. It should be listed as a separate item on an order.

SELECTION GUIDE

Model Number					Burdens			Weight in	Lbs. (Kg)
	Case Size	Set Points		Power	Supply	-	Measure- ments		1
Nomber	Size	, onas		Dc Watts		Ac VA	Ac VA	Net	Ship
			48 vdc	125 vdc	250 vdc	120 vac	120 vac		
SFF201B1A	\$2	1	3.2	3.5	6.3	8.1	1	13 (5.91)	16 (7.25)
SFF202B1A	M2	2	4.9	5.2	8.0	10.6	1	19 (8.64)	23 (10.43)
SFF204B1A	M2	4	8.4	8.7	11.5	15.7	1 -	20 (9.09)	24 (10.89)

Single phase measurement at 120 v nominal, 48/125/250 vdc or 69/120 Vrms nominal control power (see above specifications for setting ranges and ratings that apply to all models)


^{*}Total time delay is the time-delay setting plus 3 cycles plus the output relay operating time of 6-8 ms.

SFF200Static Digital Frequency Relays

GE Protective Relays

CONNECTION DIAGRAM

(Dwg. 0285A9666-0)
Fig. 2. External connections for Type SFF204 relay

IJF

Overfrequency and Underfrequency Relays

GE Protective Relays

DESCRIPTION

IJF frequency relays are of the induction disk type intended for the protection of apparatus against the effects of overfrequency and/or underfrequency. There is one target seal-in unit on the Type IJF51A, IJF51B, and IJF51C. There are two target seal-in units, one to the left and one to the right of the shaft on the IJF52A.

APPLICATION

These frequency relays are applied where detection of abnormal frequency conditions is required. One of the applications is the protection of synchronous apparatus against overspeed or underspeed conditions caused by loss of load in the case of generators, or loss of power supply in the case of motors and condensers. They can be used to operate protective devices, or to sound an

alarm whenever the frequency of the circuit (speed) varies a predetermined amount above or below normal.

The IJF can also be used for load shedding. However, this application is limited to systems where the rate of change of frequency is relatively small, or where the maximum overload on system generation is not excessive. Refer to page 11-21 for the SFF relay for load shedding applications requiring higher speed relays.

BURDENS—60 Hertz

Relay	Watts	Power	Volt-
Type		Factor	Amperes
12IJF51A	8.6	0.99	8.7
12IJF51B	5.7	0.98	5.8
12IJF51C	5.7	0.98	5.8
12IJF52A	9.5	0.89	10.7

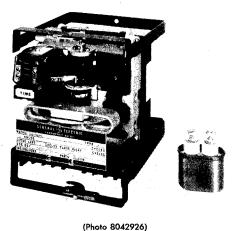


Fig. 1. Type IJF51B frequency relay

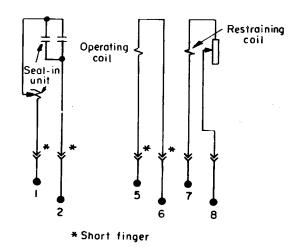
SELECTION GUIDE-0.2/2.0 Amp Target and Seal-in

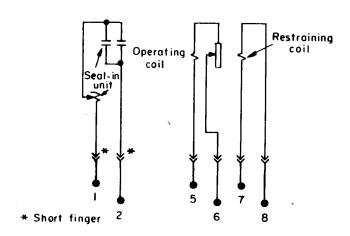
Freq.	Volts Frequency at Frequency Which Contacts Calibration are Adjusted Range		Contacts	Frequency Range at which Right Contact Closes Above	Model Number	Case Size	Approx. Wt in Lb (kg)			
		to Close (Hz) the Left Contact (Hz) (Hz)		•		Net	Shipping			
OVERFR	REQUEN	CY						•		
60	115	58 60 61 63 70	57-60 58-62 55-65 61-65 65-75	1 N.O.		12IJF51A2A A7A A11A A1A A4A	S1	11 (5)	20 (9)	
50		47 53	45-49 51-55		•••	A5A A3A				
UNDERF	REQUEN	ICY								
60	115	45 52 55 57	48-55 50-60 55-59	1 N.O.		12IJF51B1A B5A B8A B2A	S1	11 (5)	20 (9)	
50	115 220	47 47	45-49 45-49			B3A B7A				
UNDERF	REQUEN	ICY								
60	115	45 52 57	42-47 48-55 55-59	1 N.C.	:::	12UF51C1A C2A C4A	Sì	11 (5)	20 (9)	
50	115	45	42-47	3		C3A				
OVER-	AND UN	DER-FREQUENCY				*				
60	115	59	55-65	2 N.O. (Left-U.F.)	.75-2.0	12IJF52A4A	S-1	11	20	
50	115	50	49-51	(Right-O.F.)	.8-2.0	A3A	3-1	(5)	20 (9)	

① Includes external capacitor.

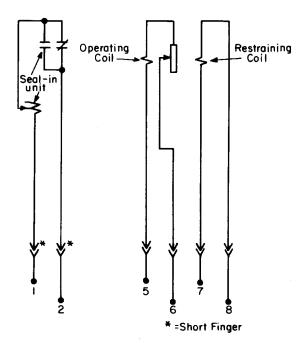
② On IJF52A relay the left (underfrequency) contact is adjustable.

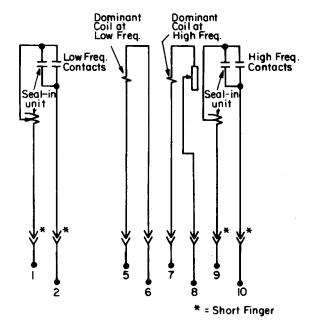
Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	Section 16


③ This contact is closed at zero volts, but open at rated voltage and frequency above set point.


Overfrequency and Underfrequency Relays

GE Protective Relays


INTERNAL CONNECTION DIAGRAMS


(K-6306813) Fig. 2. Type IJF51A relay

(K-6306616) Fig. 3. Type IJF51B relay

(362A558) Fig. 4. Type IJF51C ralay

(K-6400202) Fig. 5. Type IJF52A relay

Modular Voltage Relay

GE Protective Relays

DESCRIPTION

Type TOV relays are undervoltage and overvoltage relays, single phase, two phase, or three phase, instantaneous or fixed time, adjustable from 0.1 to 10 seconds.

Adjustments are made from dip switches located on the front of the relay.

The single phase relays include a desensitising filter to the effects of third harmonics, as well as the ability to select between overvoltage and undervoltage operation in the same relay.

TOV relays are solid state, modular relays and are supplied in 1/8 rack size cases, as shown in Figure 4.

APPLICATION

Some of the more common undervoltage applications of the TOV relay are:

- Instantaneous detection of undervoltage in automatic transfer equipment.
- As fault detector with distance relays (using communication channels) in the case of lines with weak infeed at one terminal.

Some of the more common overvol tage applications of the TOV relay are:

- As overvoltage detector for automatic control systems whose functional security depends on voltage.
- Three phase overvoltage protection with time delays ranging from 100 milliseconds to 10 seconds.
- Phase to ground fault detection in systems with isolated neutrals and in alternating current rotating machines.

CONSTRUCTION

- Accurate and reliable, with low power consumption.
- Non-Drawout Case.

- LED Indicating Lamps:
 - PICK-UP target with manual reset auxiliary power supply voltage
- Fire resistant, shock resistant, sealable plastic cover, with exterior indicator resets.
- Output unit with high seismic rating.
- High reliability components, manufactured using techniques to minimize failures due to infant mortality.

VOLTAGE RANGES

- Adjustable voltage ranges are available as follows:
 - *20 to 275 Volts AC.
 - *50 to 305 Volts AC.
 - * 3 to 65 Volts AC. (Only in single-phase version) in 1 Volt. steps.
- The maximum allowable continuous voltages are:
 - *400 AC for the 20 to 275 volts and 50 to 305 volts ranges.
 - *200 V AC for the 3 to 66 volts range.

OPERATING TIMES

There are two operating modes:

- 1. Instantaneous (25-30 milliseconds).
- 2. Time delay with two scales:
 - a. 0.1-1 seconds in 100 millisecond steps.
 - b. 1-10 seconds in 1 second steps.

The same relay can be used in either mode.

APPROXIMATE WEIGHTS

Approximate Net Weight:

5 lbs. (2.3 Kg)

Fig. 1. Relay type TOV

Approximate Shipping Weight:

5.5 lbs. (2.5 Kg)

DIRECT CURRENT AUXILIARY CIRCUIT VOLTAGE

Nominal Voltage (VDC)	Operating Range (VDC)
48	38-60
110	86-132
125	100-150
220	176-264

BURDENS

Depending on the service voltage and the number of auxiliary relays, the DC burden is:

Normal: 45 - 63 mA

Tripped: 63 - 79 mA

The burden of the AC voltage circuits

is less than 1 volt-ampere.

How to Order								Section	1
Instruction Boo	οk	s	 				_	Section	17-9

Modular Voltage Relay

GE Protective Relays

CONTACT DATA

The basic TOV relay has one auxiliary trip output relay with a form C contact. The contact rating is:

Continuous: 3 Amperes
Make and Carry: 30 Amperes

Break:

180 VA resistive at 125/250 VDC 60 VA inductive at 125/250 VDC

Additionally, another relay is provided with a form C contact. This contact can be used as a signalling relay. The contact rating is:

Continuous: 3 Amps, 250 VDC maximum.

Make and Carry: 5 Amps for 30 seconds, 250 VDC max.

Break: 25 Watts inductive 250 VDC maximum.

TYPE TESTS

The TOV relay complies with the type tests recommended by IEC 255.5, Impulse Withstand and High Frequency Interference. The relay also complies with General Electric standards for Fast Transients.

INSULATION TEST VOLTAGE

Between terminals and ground: 2000 Volts ac for one minute at industrial frequency (50 Hz or 60 Hz).

Between independent terminal groups: 2000 Volts ac for one minute at industrial frequency (50 Hz or 60 Hz).

Between terminals of each one of the output contacts:

1000 Volts ac for one minute at industrial frequency (50 Hz or 60 Hz).

Without filter (*)

46/64 Hz

TEMPERATURES RANGES

Effective range: -5 C to + 40 C Operating range: -20 C to + 55 C Storage range: -40 C to + 60 C

RELATIVE HUMIDITY

Up to 95% without condensing.

ACCURACY

Accurate to within +/-5% of Operating Value.

Accurate to within $\pm -5\%$, or 30 milliseconds, of operating time.

FREQUENCY RANGE

	¥ ¥ I E I I	IIILGI	without litter ()
Nominal frequency	50 Hz	60 Hz	50/60 Hz
Effective range	48-51 Hz	57-63 Hz	48/63 Hz

56-64 Hz

With filtor

Operating range

MODEL SELECTION (Single Phase relays)

46-53 Hz

The information to completely define a relay model follows. Along with the precise model number, please clearly specify the required characteristics.

(1) Range 20/275 V. in 1 V. steps (2) Range 50/305 V. in 1 V. steps (3) Range 3/66 V. in 1 V. steps (2) 60 Hz (A) Aux. Voltage = 48 VDC
(B) Aux. Voltage = 110 VDC
(C) Aux. Voltage = 125 VDC
(D) Aux. Voltage = 220 VDC

MODEL SELECTION (Three Phase relays)

The information to completely define a relay model follows. Along with the precise model number, please clearly specify the required characteristics.

(A) Aux. Voltage = 48 VDC
(B) Aux. Voltage = 110 VDC
(C) Aux. Voltage = 125 VDC
(D) Aux. Voltage = 220 VDC

TOV 40

(A) Aux. Voltage = 48 VDC
(B) Aux. Voltage = 110 VDC
(C) Aux. Voltage = 220 VDC

Example: Modular overvoltage relay, three phase, 50 - 305 Volts, with auxiliary voltage of 48 VDC. MODEL - TOV4022B010A00.

^(*) Only the three-phase model.

Modular Voltage Relay

GE Protective Relays

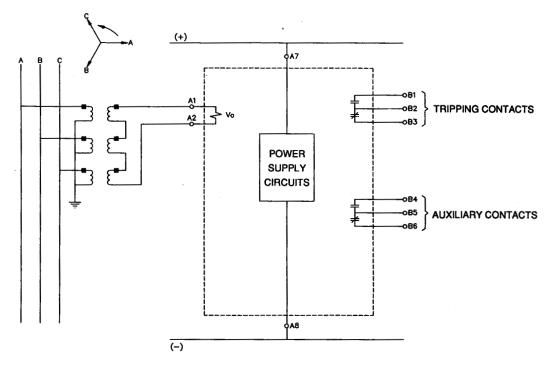


Fig. 2. External connection diagram. Single phase version

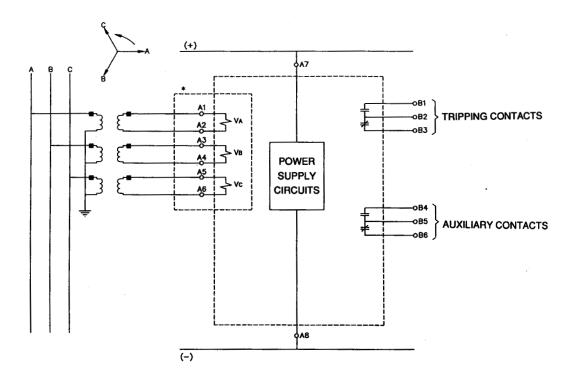
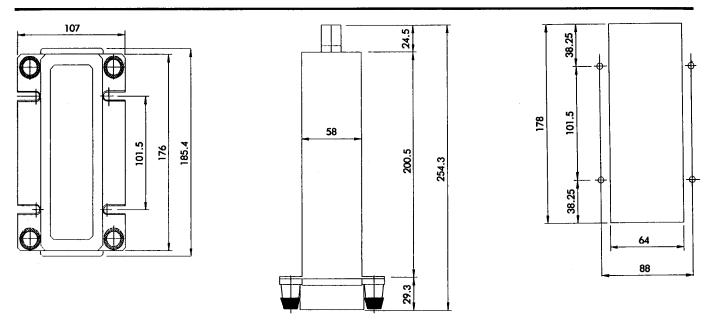



Fig. 3. External connection diagram. Three phase version

Modular Voltage Relay

GE Protective Relays

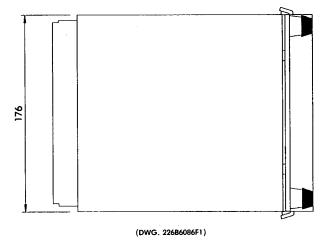


Fig. 4. TOV Relay Dimensions and Mounting Specifications

 $\textbf{DIMENSIONS} | \textbf{IN} \ \textbf{m.m.}$

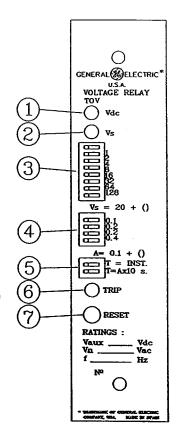


Fig. 5. Nameplate

- 1 RELAY IN SERVICE INDICATOR (GREEN LED)
- 2 RELAY PICK-UP INDICATOR (RED LED)
- 3 TAP SELECTION
- 4 TIME SELECTION
- **5 TIMING MODE**
- 6 TRIP INDICATOR (RED LED)
- 7 RESET

Voltage and Frequency Relays

TOV Series 1000C

Modular Voltage Relay

GE Protective Relays

DESCRIPTION

Type TOV relays are undervoltage and overvoltage relays, single phase, two phase, or three phase, instantaneous or fixed time, adjustable from 0.1 to 10 seconds.

Adjustments are nade from dip switches located on the front of the relay.

The single phase relays include a desentising filter to the effects of third harmonics, as well as the ability to select between overvoltage and undervoltage operation in the same relay.

TOV relays are solid state, modular relays and are supplied in 1/8 standard 19" wide rack size cases, as shown in Figure 4.

APPLICATION

Some of the more common undervoltage applications of the TOV relay are:

- Instantaneous detection of undervoltage in automatic transfer equipment.
- As fault detector with distance relays (using communication channels) in the case of lines with weak infeed at one terminal.

Some of the more common overvoltage applications of the TOV relay are:

- 1 . As overvoltage detector for autommatic control systems whose functional security depends on voltage.
- Three phase overvoltage protection with time delays ranging from 100 milliseconds to 10 seconds.
- Phase to ground fault detection in systems with isolated neutrals and in alternating current rotating machines.

CONSTRUCTION

- Accurate and reliable, with low power consumption.
- Non-Drawout Case.
- LED Indicating Lamps:

PICK-UP target with manual reset auxiliary power supply voltage.

- Fire resistant, shock resistant, sealable plastic cover, with exterior indicator resets.
- Output unit with high seismic, rating.
- High reliability components, manufactured using techniques to minimize failures due to infant mortality.

VOLTAGE RANGES

- Adjustable voltage ranges are available as follows:
 - 20 to 275 Volts ac
 - 50 to 305 Volts ac
 - 3 to 65 Volts ac

(Only in single-phase version) I_n 1 Volt steps.

- The maximum allowable continuous voltages are:
 - 400 ac for the 20 to 275 Volt and 50 to 305 Volt ranges.
 - 200 VAC for the 3 to 66 Volt range.

OPERATING TIMES

There are two operating modes:

- 1 . Instantaneous (25-30 milliseconds).
- 2. Time delay with two scales:
 - a. 0.1-1 seconds in 100 millisecond steps.
- b. 1-10 seconds in 1 second steps. The same relay can be used in either mode, or in both modes.

APPROXIMATE WEIGHTS

Approximate Net Weight:

5 lbs. (2.3 Kg)

Approximate Shipping Weight:

5.5 lbs. (2.5 Kg)

AUXILIARY CIRCUIT VOLTAGE

Nominal Voltage	Operating Range
24-48 Vdc/ac	19-60 Vdc/ac
48-125 Vdc/ac	38-150 Vdc/ac
110-240 Vdc	88-288 Vdc
110-220 Vac	88-264 Vac

BURDENS

Depending on the service voltage and the number of auxiliary relays, the dc burden is:

Normal: 45-63 mA Tripped: 63-79 mA

The burden of the ac voltage circuits is less than 1 volt-ampere.

CONTACT DATA

The basic TOV relay has one trip output relay and three switched auxiliary output relays, the trip output contact rating is:

Continuous: 3 Amperes Make and Carry: 30 Amperes Break:

180 VA resistive at 125/250 Vdc 60 VA inductive at 125/250 Vdc

The three auxiliary output relays contact rating is:

Continuous:

3 Amps, 250 Vdc maximum.

Make and Carry:

5 Amps for 30 seconds. 250 Vdc max. Break:

25 Watts inductive 250 Vdc maximum.

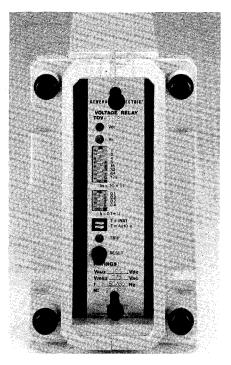


Fig. 1. Relay type TOV

TYPE TESTS

The TOV relay complies with the type tests recommended by IEC 255.5, Impulse Withstand and High Frequency Interference. The relay also complies with GE standards for Fast Transients.

INSULATION TEST VOLTAGE

Between terminals and ground: 2000 Volts are for one minute at industrial frequency (50 Hz-60 Hzx).

Between independent terminal groups: 2000 Volts ac for one minute at industrial frequency (50 Hz-60 Hz).

Between teerminals of each one of the output contacts:

1000 Volts ac for one minute at industrial frequency (50 Hz-60 Hz).

TEMPERATURE RANGES

Effective range: -5 C to +40 C Operating range: -20 C to +55 C Storage range: -40 C to +60 C

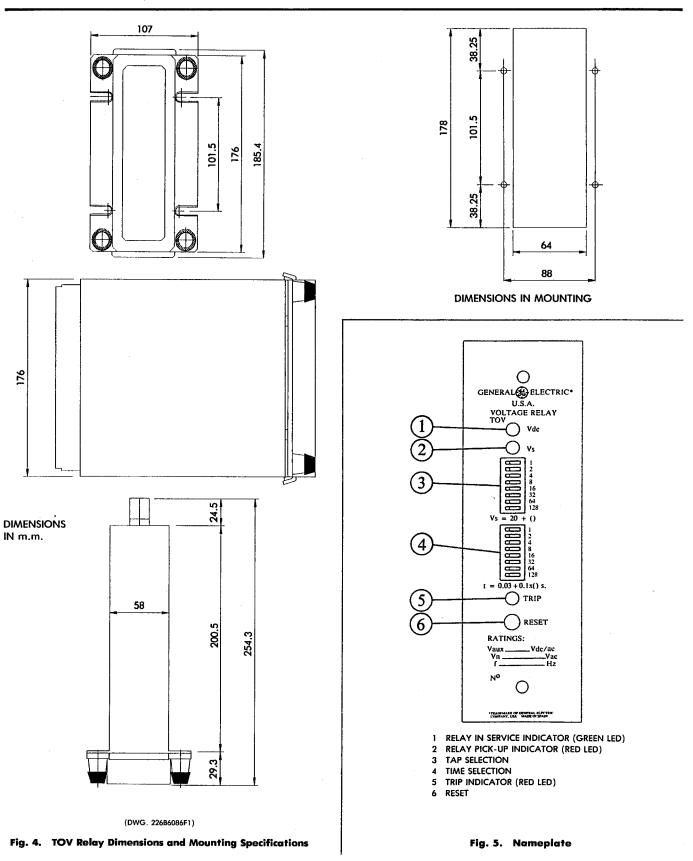
RELATIVE HUMIDITY

Up to 95% without condensing.

ACCURACY

Accurate to within $\pm 5\%$ of Operating Value.

Accurate to within ± 5 %, or 30 milliseconds, of operating time.


10

TOV Series 1000C

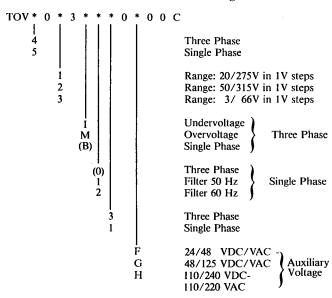
Modular Voltage Relay

GE Protective Relays

TOV Series 1000C

Modular Voltage Relay

GE Protective Relays


FREQUENCY RANGE

	With	(*)	
Normal frequency	50 Hz	60 Hz	50/60 Hz
Effective range Operating range	45-51 Hz 46-53 Hz	57-63 Hz 57-63 Hz	48/63 Hz 46/64 Hz

^(*)Only the three-phase model.

NOMENCLATURE SELECTION GUIDE

TOV Model Numbers Three Phase and Single Phase Models

The TOV is available in three models with switched contacts. One live voltage, one started, and one trip auxiliary.

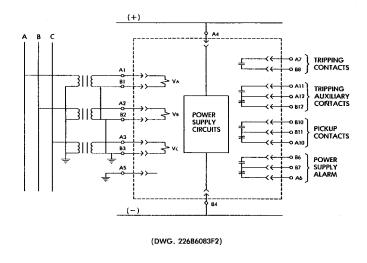


Fig. 2. External connection diagram. Single phase version

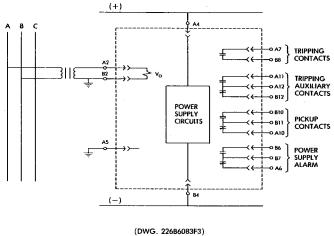


Fig. 3. External connection diagram. Three phase version

SECTION: 11

Test Equipment and Accessories

XCA Test Probe and Plug 1
XLA12A Test Plug
XLA13A Test Plug
XTM Test Plug, Card Extender and Bracket Kits
XRT12A Electro-Mechanical Relay Tool Kit 6
Harmonic Restraint Test Rectifier 7
Auxiliary Transformers
Tripping and Blocking Rectifiers 11

Test Equipment and Accessories

GE Protective Relays

Test Probes and Plugs for C-case Drawout Relays

DESCRIPTION AND APPLICATION

Three different XCA test plugs are available to provide an easy means of testing Ccase drawout relays without removing them from their cases.

The XCA11A1 is a two-position fourpoint test probe used in testing C-case relays. It is keyed to the barrier strips in the C-case, and can only be inserted in positions 1-2, 3-4, 5-6, etc. These terminal pairs are used for current transformer connections and trip circuit outputs in C-case relays. It cannot be inserted in positions 2-3, 4-5, etc. It has contact fingers which are electrically separate, top to bottom, and are connected to standard banana-plug receptacles on the face of the probe. This test probe is furnished with an accessory shorting plug Type 0184B5461 (see Figure 1) which may be used to short out CT inputs during relay tests.

The XCA11A2 is a prewired test probe for use in measuring current in the CT circuits connected to a C-case relay. It consists of a Type XCA11A1 test probe to which a jumper and six-foot long (1.8 m) ammeter leads have been added. See Figure 2.

The XCA28A1 is a full-width 14-position 28-point test plug which provides complete flexibilty in testing C-case relays. See Figure 3. It has 28 electrically separate contact fingers connected to 14 concentric binding posts. One side of the test plug is prominent-

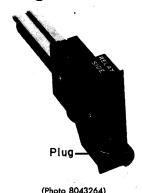


Fig. 1. Type XCA11 test probe with shorting plug 0184B5461

ly marked "Relay Side" and the other "Case Side". The test plug is keyed so that it can only be inserted in the proper manner. The "Relay Side" contact fingers are connected to the black inner binding posts and engage the relay internal connections. Test leads with either spade lugs or banana jacks may be used with these binding posts. The contact fingers on the "Case Side" are connected to the outer binding posts with red thumb nuts and engage the C-case stud connections. Removable test links are furnished with each test plug for through connection, short circuiting and external wiring. These accessory links are identical to those supplied with the Type XLA test plug. See Fig-

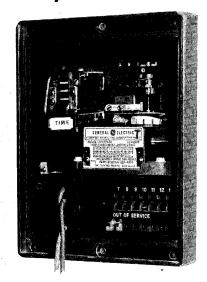


Fig. 2. C-case relay with XCA11A2 ammeter test probe

TEST PROBE SELECTION GUIDE®

Application	Model	Number	Weight, lb (kg)			
	Number	Required	Net	Shipping		
All tests	12XCA28A1	1	2.6 (1.2)			
Measure CT current	12XCA11A2	1	.3 (.14)	.5 (.2)		
Test current circuit only	12XCA11A1@	1 and 1 shorting plug	.15 (.06)	.3 (.14)		
Test current and output circuits	12XCA11A1@	2-4 depending on relay				

① For maximum flexibility in testing, it is recommended that each set of test equipment include one 12XCA28A1 full-width test plug and one 12XCA11A2 ammeter test probe. Alternatively, two 12XCA11A1 two-position test probes, each with 0184B5461 shorting plug and one 12XCA11A2 ammeter test probe should be ordered.

② Model 12XCA11A1 includes one accessory shorting plug 0184B5461.

How to Order Section 1 Instruction BooksSection 17

Test Equipment and Accessories

GE Protective Relays

Test Probes and Plugs

CONNECTION DIAGRAM

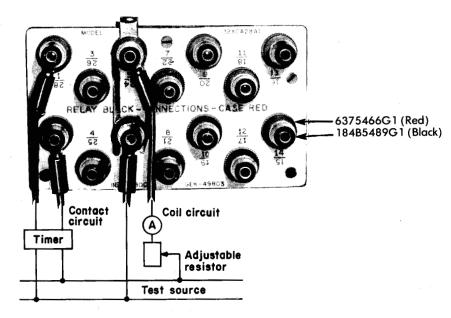


Fig. 3. Typical separate source connections and wiring diagram for testing an IFC overcurrent relay using the XCA28 test plug

Fig. 4. Accessory links are provided with the test plug XCA28 for jumper connections and for connections to terminal studs

Accessory Link Kit = (10)-6242939P1 thru-links (5)-6375471P1 short-circuit links (10)-6242937P1 test clip (10)-6242938P1 test clip

Test Equipment and Accessories

GE Protective Relays

Test Plugs for Drawout Relays

APPLICATION

The test plug provides a quick and easy means of testing drawout case relays or meters without removing them from their cases. The test plug is substituted for the regular connecting plug and there is nothing to disconnect. The XLA12A enables power to be applied to the relay from either a separate source or the source that feeds the equipment. The XLA13A can only be used when a separate source of power is available.

To insure low-contact resistance the test plug contact fingers are silver plated.

XLA12A 20-POINT PLUG

The XLA12A test plug consists of a black and red Textolite® molding with twenty electrically separate contact fingers connected to ten concentric binding posts. The ten contact fingers on the black side are con-

nected to the inside binding posts with the black thumb nuts and engage the relay internal connections. The contact fingers on the red side are connected to the outer binding posts with the red thumb nuts and engage the drawout case stud connections. When using the test plug in the bottom of the relay, numbers one to ten, corresponding to the relay studs, appear upright, while numbers eleven to twenty are upside down. It is impossible, due to its construction, to insert the plug into the bottom of a relay with numbers one to ten up-side down. By the same token, numbers eleven to twenty will always appear in the upright position when the plug is inserted in the top of a

NOTE: Links and test clips are provided with each XLA12A in the quantities shown in Fig. 4.

(Photo 8043221) Fig. 1. Drawout relay with XLA12A test plug inserted



Fig. 2. Sectional view of XLA12A test plug showing internal wiring

SELECTION GUIDE

	Number	Approx W	't in lb (kg)
Model No.	of Points	Net	Shipping
12XLA12A1	20	3 (1.4)	6 (2.7)
12XLA13A1	10	2 (0.4)	4 (1.8)

TUD CONNEC Contact Coil circuit circuit Timer Adjustable resistor Test source

(Photo 8004359)

Fig. 3. Typical separate source connections and wiring diagram for testing an IAC overcurrent relay using the XLA12A test plug

6242938

273A9598G1

Accessory Link Kit =(10)-6242939P1 thru-links (5)-6375471P1 short-circuit links

(10)-6242937P1 test clip (10)-6249938P1 test clip

(Photo 1236837)

Fig. 4. Accessory links are provided with the test plugs for jumper connections and for connections to terminal studs

How to Order Section 1 Instruction Books Section 17

XLA Test Equipment and Accessories

GE Protective Relays

Test Plugs and Clip

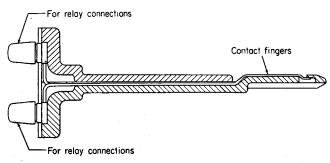


Fig. 5. Sectional view of XLA13A test plug showing internal wiring

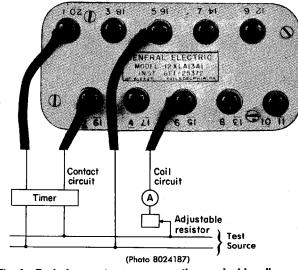


Fig. 6. Typical separate source connections and wiring diagram for testing an IAC overcurrent relay using the XLA13A test plug

XLA13A 10-POINT PLUG

The XLA13A test plug consists of a black Textolite molding with ten electrically separate contacts. Each contact terminates at a separate binding post. See Fig. 6. When the relay connecting plug is withdrawn any current-transformer secondaries will be short-circuited by shorting bars in the case. The insertion of the XLA13A test plug does not disturb the current transformer shorting arrangement. The diagonally staggered binding posts are numbered. Num-

bers one to ten, corresponding to the relay stud connections, appear upright when using this plug in the bottom of a relay, while number eleven to twenty appear up-side down. Because of its design, the XLA13 test plug cannot be inserted into the bottom of a relay with numbers one to ten up-side down. Thus, the contacts of the inserted plug will always be toward the relay.

NOTE: Ten test clips are provided with each XLA13A as shown in Fig. 7.

ACCESSORY TEST CLIP

Accessory Link Kit = (10)-6242938P1 test clip 273A9598G2

Qty 10 Cat. No 6242931 Small test clip

(Photo 1236837)

Fig. 7. Accessory test clip

Test Plugs, Card Extenders and Bracket Kits

Test Equipment and Accessories

GE Protective Relays

DESCRIPTION AND APPLICATION

The Type XTM test plug is available for testing modular type relays. The connection plugs can be removed from the modular relay, and the Type XTM test plug can be inserted, as shown on Fig. 3, for current injection testing and input/output access. The modular relays have two connection plugs and require two test plugs, one right-hand test plug and one left-hand test plug (See Fig. 1). Modular relay, Fig. 3, is shown with left-hand test plug inserted. The handle of the test plug may be pulled out and turned to the right for easy access to connection points.

The card extender, listed in Table 2 below, provide versatility for testing plugin modules in the relay. The module to be tested can be removed from the relay, the card extender inserted in place of the module, then the module can be inserted into the card extender as shown in the example in Fig. 3. This gives complete access to module card for test purposes.

A bracket kit for semi-flush mounting is required when selected equipment, listed in Table 3 below, is being mounted in an existing 17" deep GE Swing Rack Cabinet. The brackets provide for shelf extention when modular relays are mounted in existing cabinets as mentioned above. Pricing for test plugs, card extenders and bracket kits can be found on Page 9-1 of the GE pricing catalog, GEP-971A.

ORDERING GUIDE

TABLE 1—Test Plugs

Catalog Number	Number Required	Net Equipment
XTM28L1 (Left Hand)	2	DGP
XTM28R1 (Right Hand)	2	DGP
XTM28L1 (Left Hand)	1	All Other Modular
XTM28R1 (Right Hand)	1	Relays

Note: (1) pair test plugs provides 28 test points

For Modular Relays

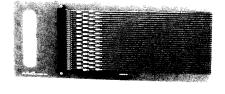


Fig. 1. XTML1 Test Plug (Left hand test plug shown).

Fig. 2. 0138B7406G1 Card Extender.

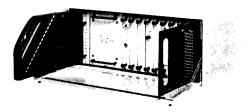


Fig. 3. Test Plug and Card Extender inserted into relay.

TABLE 2—Test Extenders

Catalog Number	Net Equipment	Number Required
138B7406G1	DLS, PLS, TLS, TYS	1
19B230830G1	CS51C	1
19C318404G1	CS51B, 61, 71A	1
19D427767G1	NN & NS40A, TYS CS25/27C, 28A	1
215B8031G1	DDP, SAM200, SFF200	١
215B8450G1	SLY80	1

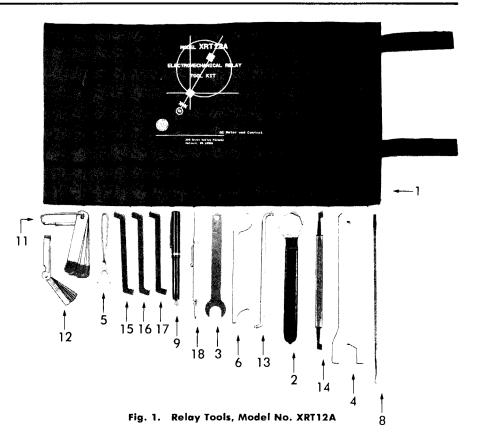
TABLE 3—Bracket Kits for Semi-Flush Mounting

Catalog Number	Net Equipment	Number Required
19D436725G4	CS51C, DLP, DLS, PLS	1
19D436725G4	TLS, TYS	2
286A3620G1	CS28A, NS40A	1

How to Order	 ٠.		 	 . Section	1
Instruction Books				 Section	12

Electromechanical Relay Tool Kit

Model XRT12A


GE Protective Relays

APPLICATION

Model No. XRT12A covers a set of relay tools contained in a flexable vinyl pouch. The set consists of 18 selected tools, of suitable variety, for the proper maintenance of General Electric relays. Individual tools are described in the table below.

MODEL NO. AND WEIGHTS

Model No.	Approx. Wt. in Lb.						
Model 140.	Net	Shipping					
XRTA12A	1.2	2.0					

TOOLS CONTAINED IN TOOL SET MODEL NO. XRT12A

PT	Catalog #	Description	Typical Use				
1	0286A2026P001	Hvy Gauge Vinyl Pouch					
2	0178A9455P001	Spec, 15/16" Box Wrench	Core adj4 pole cup unit				
3	0246A7916P001	Spec. 1/2" Open-end Wrench	Clutch adj4 pole cup unit				
4	0378A0518P004	Spec. 13/16" Open-end Wrench	Core adj. 8 pole cup unit				
5	0286A2024P001	Spec. 5/8" Spanner Wrench	Spring adj8 pole cup unit				
6	0184B5401P001	Spec. Spanner Wrench	Spring adjIFC unit				
7	0286A2025P001	Contact Leaf Adjuster (not shown)	Moving contacts-HFA, HGA				
8	0285A5441 P-1	Push/Pull Spring Hook	Extension type springs				
9	0285A5442 P-1	Contact Burnisher	Contact cleaning				
10	0285A5442 P-25	25 Extra Blades for Burnisher	Contact cleaning				
11	0285A5443 P-1	Angle Feeler Gauge Set	Contact gaps-general				
12	0285A5444 P-1	Straight Feeler Gauge Set	Contact gaps-general				
13	0285A5445 P-1	Contact Leaf Adjuster	Telephone type relay				
14	0285A5445 P-2	Contact Leaf Adjuster	Telephone type relay				
15	0285A5446 P-1	Armature Adjuster	Telephone type relay				
16	0285A5446 P-2	Armature Adjuster	Telephone type relay				
17	0285A5446 P-3	Armature Adjuster	Telephone type relay				
18	0285A5447 P-1	0.085" wide Pot Adjuster	Trim pots-PC boards				

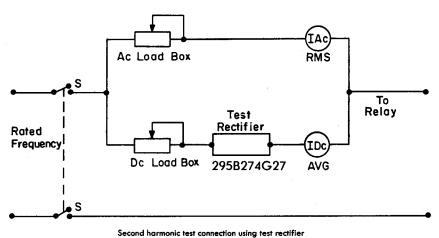
Portable Test Rectifier

For Testing Harmonic Restraint Characteristics

GE Protective Relays

For Relay Types STD, BDD and BFC

DESCRIPTION


The test rectifier consists of a medium power silicon rectifier mounted on an appropriate heat sink in a small molded case. Connections to the terminals at each end of the case may be made by clamping leads or terminal under the molded thumb nuts, or by clipping the leads directly to the hexagonal portion of the terminal. A half wave rectifier symbol is shown on the nameplate to facilitate proper choice of DC meter connections.

APPLICATION

The test rectifier is a compact, portable piece of test equipment designed for calibration testing of the second harmonic restraint feature of differential or overcurrent relays.

Magnetizing inrush current in a power transformer contains both second and third harmonics as well as components of higher frequency in addition to the dc and fundamental frequency components. Normally, a relay receives the difference in inrush magnetizing currents for two phases. Usually only one phase has a magnetizing inrush but occasionally two cores have simultaneous inrushes. This is the most severe condition because if these currents are equal, the third harmonic will be largely cancelled due to the 120-degree phase relationship of the two phases.

It is desirable to use a test method which will provide a good match with critical service conditions. Therefore, it is better to set the harmonic restraint adjustment on the relay using test currents containing second harmonic rather than third harmonic.

.....

Fig. 1.

The test method, Fig. 1 adopted for transformer differential relays involves a test current made up of two parts. One part is a half-wave rectified current I_{DC} and the other is an ac current I_{AC} of the same phase relation.

The test rectifier is designed for second harmonic calibration testing of all Type BDD, HDD and STD transformer differential relays and Type BFC harmonic restraint overcurrent relays. Some of the older transformer differential relays, such as Type HDD, BDD15A, or BDD16A, may originally have been calibrated at the factory with third harmonic current by using a test reactor in the circuit. It is recommended that the second harmonic current and test rectifier method of

calibration testing be used for these relays since it will provide a higher degree of accuracy.

For specific information on how to use the test rectifier for testing any of the harmonic restraint relays, refer to the instruction book.

SELECTION GUIDE 50/60 Hertz®

	nput tage	Dc Output Amperes	Catalog	Approx Weight Pounds (Kg)			
Nominal	Maximum	Maximum	Number	Net	Shipping		
115	260	8	295B274G27	0.5(0.23)	1(0.45)		

① For rectifier application in dc tripping or control circuits, refer to TRIPPING AND BLOCKING RECTIFIERS.

REFERENCES:

How to Order			 		. Section	l
Instruction Books .					. Section	17
Relay Standards			 		.Section	16

Test Equipment and Accessories

In the chart there is two pages reserved for the HARMONIC RESTRAINT, but in last years book there is only one page to scan, not two.

Auxiliary Transformers

For Balancing Secondary Currents of Current Transformers

GE Protective Relays

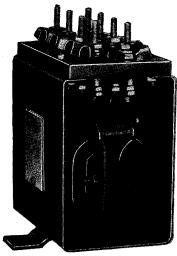
APPLICATION

The auxiliary transformers listed below are used primarily with relays for differential protection of power transformers. The ratio of power transformers is usually such that equal values of secondary current cannot be obtained from current transformers of standard ratio on the high- and low-voltage sides.

Auxiliary transformers should be used with the Types IAC and IFD relays for all such applications. They are not required with relays which have provisions for balancing secondary currents, such as Types IJD and BDD.

SELECTION

Assume it is designed to provide differential protection for a 13,800/2300-volt,


1000-kVa single-phase power transformer. The normal full-load current on the high and low side is 72 and 435 amperes respectively. This would require current transformers rated 100/5 and 500/5 amperes, which would give secondary currents of 3.6 and 4.35 amperes. The transformer selected should have tap ratings equal or proportional to 3.6 and 4.35 amperes. Refer to the listing below. Taps 5 and 8 of the transformer Cat. No. 3661843G9 are suitable for the application.

NOTE: In a wye-delta bank of power transformers, the current transformers in the leads to the wye-connected winding must be connected in delta. Therefore the ratio of the relay current to the current transformer secondary current for the delta current transformers is 1.73.

BURDEN

The voltampere burden of these devices will not exceed 15 voltamps at a 60 Hertz input current equal to tap value.

The burden can be calculated from the equivalent circuit diagram shown by Figure 2. When used to step up the current, it must be remembered that the burden of the load increases as the square of the step-up ratio.

(Photo 8007679)
g. 1. Auxiliary transformer,

Cat. No. 3661843

(Photo 8007679)

Fig. 2. Saturation curve and equivalent circuit of auxiliary transformers Cat. No. 3661843G1, 2, 4, 6, 11, 12, 13, 15, 16, and 17. For other groups, the currents, voltages, and impedances read or computed from Fig. 2. should be multiplied by the factors in the following table: (Curve No. 6174213)

			*
Auto. Trans Group No.	Amperes	Volts	Impedance
G3 G5 G7 G8 G9 G10 G14	1.25 1.25 1.25 0.94 0.94 1.25	0.80 0.80 0.80 1.06 1.06 0.80 0.87	0.64 0.64 0.64 1.13 1.13 0.64 0.76

CHARACTERISTICS

64 60 56 52 48			A	S	Ca atu	t. 3 rat	Tro 666 ion	18 C	43 urv	e	r			
40 36														
\$32 28 24 20 16	1		F	-	0. <u> 5</u> R 00	$\langle \hat{\ } \rangle$	<u>0</u> 6	~	X	R	_	ohn	ns	
12 8 4 0					00	tui tui	rns	рі	co	ar nd	y, ary		ו	
U		1	•	2	_ :	3 .m	pe	t res		5	,	5	•	r

SELECTION GUIDE—All are rated 25-60 Hertz

	Tap Ratings—Amperes, 25-60 Hertz									ox Wt (kg)		Tap Ro	atings -	-Ampe	res, 2	5-60 H	ertz			Appr	ox Wt (kg)
		Term	inal Tap	Num	ber		-	Cat. No.	Net	Ship			Term	inal Tap	Num	ber			Cat. No.	Net	Ship
1	2	3	4	5	6	7	8			J.,,,	1	2	3	4	5	6	7	8			
Start	8.7 5.7 8.7 7.4 9.0 10.4 13.0 6.65 10.5	5.0 5.0 6.0 5.0 8.7 7.3 7.5 5.0	4.8 4.8 5.8 4.8 8.3 5.2 7.0 4.75 4.75	4.6 4.6 5.6 4.6 5.6 4.9 6.5 4.5	4.4 5.4	4.2 4.2 5.2 4.2 5.2 4.3 5.5 4.0 4.0	4.0 4.0 5.0 4.0 5.0 4.0 5.0 4.0 5.7 3.75	3661843G1 G2 G3 G4 G5 G6 G7 G8	6 (2.7)	7 (3.2)	Start	10.5 13.8 7.55 8.4 8.7 7.0 8.7 15.1	7.3 5.5 7.25 8.0 5.6 6.7 6.0 5.0	7.0 5.2 7.15 7.6 5.4 6.4 5.5 4.8	6.7 4.9 7.0 7.2 5.2 6.1 5.0 4.6	6.4 4.6 6.75 5.0 5.8 4.5 4.4	6.1 4.3 5.65 4.2 4.8 4.2 4.0 4.2	5.0 4.0 4.0 4.6 4.6 4.0	3661843G10 G11 G12 G13 G14 G15 G16 G16	6 (2.7)	7 (3.2)

REFERENCES:

Dimensions	Section 16
How to Order	Section 1
Instruction Books	Section 17
Target and Contact Data	Section 16
Relay Standards	

Auxiliary Transformers

For Balancing Secondary Currents of Current Transformers

GE Protective Relays

DESCRIPTION

Auxiliary current compensating transformers are available for use with ground distance relays to improve the reach measurement.

No. 0367A0266G1 (two windings) No. 0367A0266G2 (single winding)

APPLICATION

These auxiliary transformers are intended for use with ground distance relays to provide current compensation for the zero sequence self-impedance of the protected line, or for the zero sequence mutual impedance with a parallel line. Transformer 0367A0266G1, a two-winding transformer, is intended for application with reactancetype ground distance relays where it is desired to provide compensation for both the zero-sequence self-impedance and mutual impedance.

Transformer 0367A0266G2, a singlewinding transformer, is intended for applications with mho-type directional ground distance relays where compensation for the zero-sequence self-impedance may be necessary but mutual compensation is not recommended. Both transformers are suitable for application on either 50 or 60 Hertz systems.

For more detailed information on the application of these auxiliary transformers refer to the appropriate instruction book of the relay type to be used: CEXG20, CEYG51, GCXG51A or GCXG53A.

CHARACTERISTICS

The excitation curve for the 100-turn winding of either transformer is shown in Figure 2. Internal connections and coil tap connections are shown in Figures 3 and 4.

(Photo 8043223)

Fig. 1. Typical auxiliary compensating Trans. No. 0367A0266G2

SELECTION GUIDE

Ac	Primary	Secondary	Catalog	Approx V	Vt lb (kg)
Rating	Turns	Turns	Number	Net	Ship
50/60 Hz	150 150	50	0367A0266G1 G2	7 (3.2) 7.5 (3.4)	8 (3.6) 8.5 (3.9)

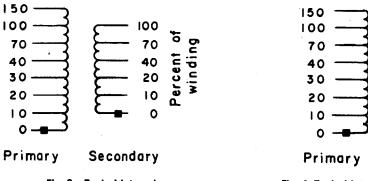


Fig. 3. Typical internal for Cat. No. 0367A0266G1

Fig. 4. Typical internal for Cat. No. 0367A0266G2

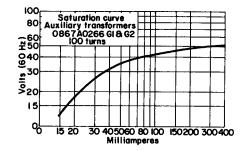


Fig. 2. Typical saturation curve.

RATINGS

The one second current rating of these auxiliary transformers is 260 Amperes.

REFERENCES:

Dimensions	. Section 16
How to Order	. Section 1
Instruction Books	. Section 17
Target and Contact Data	. Section 16
Relay Standards	Section 16

Tripping and Blocking Rectifiers

For DC Control Circuits
Up to 250 Volts DC (Nominal)

GE Protective Relays

Rectifiers for Tripping Duty or Blocking in Control Circuits in Place of Auxiliary Relays

(Photo 8039262)

Fig. 1. Medium current double rectifiers, front view with case and mounting bracket.

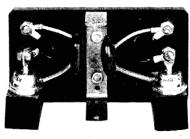
DESCRIPTION Medium Current Rectifiers

The medium-current rectifiers with necessary "heat sinks" (for heat dissipation) and surge capacitors, are mounted in a molded case with provision for surface mounting or mounting on the back of any GE drawout relay case for switchgear applications. It is available with a single rectifier or with double rectifiers (Fig. 1 and 2). Both sides include mounting plate (Fig. 1).

Low Current Rectifiers

The low-current rectifiers are mounted on a simple insulated base to provide ease of mounting and have a protective plate for mechanical protection of the individual rectifiers.

It is available with a single rectifier or with double rectifiers, Fig.3.


No surge protection is included with this unit since application and circumstances will vary considerably. However, if for tripping duty it is suggested that user provide suitable protection.

APPLICATION

These Silicon Junction rectfiers are proven components with no moving parts for isolating or tripping duty in control circuits. They reduce fault clearing time and serve in place of auxiliary relays.

The application of these rectifers may:

- Reduce tripping time when tripping two breakers from one set of relays. (Auxiliary trip relay requires from ½ to 1 cycle.)
- 2. Reduced circuit complexity in isolating

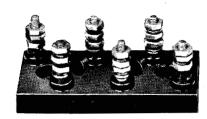
(Photo 8043231)

Fig. 2. Medium current double rectifiers, back view, removed from case.

protective relay trip circuits and transfer trip-keying circuits.

Simplify circuitry for many protective relay schemes.

Tripping Duty


A pair of tripping rectifiers provides protective-relay tripping of two circuit breakers in a ring bus, 1½-breaker or double-breaker arrangement while maintaining the necessary separation of the two trip circuits in case of tripping by control switch or by relays of adjacent circuits, (Fig. 4). This is limited to cases where the total trip current of the two breakers is within the relay contact rating, usually 30 amperes.

In cases where circuit breakers require less than 15 amperes for normal trip but more than 15 amperes each for trip-free operation, the rectifier scheme may still be used safely if only one breaker is closed or reclosed for testing a circuit, with the other breaker following after a few seconds.

Blocking

A single rectifier capable of handling trip current at each line terminal, can maintain isolation between the protective relay trip circuit, (Fig. 5), and the transfer-trip-receiver trip circuit in a two-way transfer-trip installation, thus avoiding locking in of both channels for a mid-line fault that actuates the protective relays at both ends.

The low-current rectifiers are used primarily for control circuit applications such as across an auxiliary relay coil to give time-delay dropout.

(Photo 8025304)

Fig. 3. Low-current double rectifier board assembly (with cover plate removed).

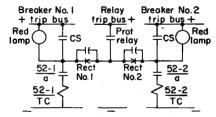


Fig. 4. Tripping rectifiers for double-bus or

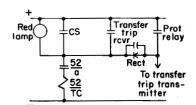


Fig. 5. Tripping rectifier for two-way transfer tripping of a transmission line

Surge Protection

An internally mounted capacitor is connected across each rectifier unit of the **medium-current** rectifier to provide protection for minor surges which may occur in control wiring. **Severe surge** conditions may require corrective measures in the control-circuit design.

REFERENCES:

Dimensions	. Section 16
How to Order	. Section 1
Instruction Books	. Section 17
Target and Contact Data	. Section 16
Relay Standards	Section 16

Test Equipment and Accessories

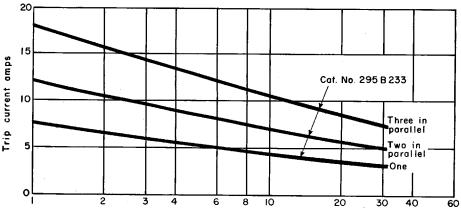
Tripping and Blocking Rectifiers

For DC Control Circuits Up to 250 Volts DC (Nominal)

GE Protective Relays

SELECTION GUIDE

Typical Applications	No. Rectifier		Dc Amps Continuous	Dc Amps per Circuit	Dc Volts Forward Drop	Dc MA Leakage	PIV	Catalog Number	Approx lb	Weight (kg)
	Circuits Battery	Battery Voltage	55C Ambient per Circuit	30-Second Rating	Max.	Mox.			Net	Shipping
MEDIUM CURRENT	RECTIFIER	S								
Tripping two breakers	2 2	24-125 24-250		30	1.2V at 30 amp	4 MA at 140V 4 MA at 280V	400V 600V	102L218G8 G9	21/2(1.13)	31/2(1.59)
Blocking or relay trip circuits	1	24-125 24-250	10			4 MA at 140V 4 MA at 280V	400V 600V	G11 G12	11/2(0.68)	21/2(1.13)
LOW CURRENT REC	TIFIERS	<u> </u>						· · · · · · · · · · · · · · · · · · ·		
Control Circuit	2 2	24-125 24-250				0.3 MA at 140V 0.3 MA at 280V	400V 600V	2958233G14 G15	1/2(0.23)	1(0.45)
Control Circuit	1	24-125 24-250	0.72	See Fig. 6	1.2V at 0.72 amp	0.3 MA at 140V 0.3 MA at 280V	400V 600V	G12 G13	3/8(0.17)	3/4(0.34)


SELECTION CONSIDERATIONS

The selection of the proper rectifier unit depends upon the control-circuit voltage, current required, and whether one or two breakers are to be tripped. See Fig. 6 for a curve of trip current plotted against duration in cycles for the low-current units.

Assume an application, such as shown in Fig. 4 using breakers with rated interrupting time of eight cycles and trip current of 6 amperes each at 125 volts. Assume that it is used with an NLR recloser giving one instantaneous and two 15-second reclosures, on a permanent fault.

Total number of trippings	4
Assume trip current duration same as listed interrupting time	8 cycles
Total duration of trip current	32 cycles
From Fig. 6 or table for 125V nominal, 140V max.,Cat. No.	
or use 3 units of	

Order either 1 Cat. No. 102L218G8 or 3 Cat. No. 295B233G14 (User to provide suitable surge protection for the Cat. No. 295B233G.... units).

Total duration of trip current in one reclasing cycle (cycles at 60 cps)

Fig. 6. Short-time rating of silicon rectifier (for each trip circuit)

SECTION: 12

General Information Dimensions and Data

Dimensions-Component Relays	1
Target and Contact Data	14
Relay and Accessory Standards	16
Device Function Numbers	19
Drawout Relay Cases	21
Component Relay Nomenclature	

GE Protective Relays

Dimensions are subject to change and should not be used for construction without approval.

INDEX

	Case / Relay Type	Page Number	Equipment Type	Page Number
Drawout Ca	ase			
Case Size	C1 L1 L2 L2B L2D L2T M1	4 2 2 2 2 2 2 2 2 2 2	HFA65 Rectifier HFA66 Rectifier HGA18H Rectifier HGA18J Rectifier IJF Capacitor SPA Auxiliaries SPD Auxiliaries	9 9 9 9 13, 14 13, 14
	M2D	2 2 2 2 2	Accessories Test Equipment Resistors Modular Relays	10, 11 12 12 12 15, 16, 17
Nondrawout Case Size:	Case L1E M1E S1E	2 2 2		i i
Nondrawou Relay Type:	t Case HAA HEA HFA HGA HGC HMA NGA NGV PJC PJV SAM	7 5 6 7, 8 7, 8 7, 8 7 9 9		

98

Dimensions

GE Protective Relays

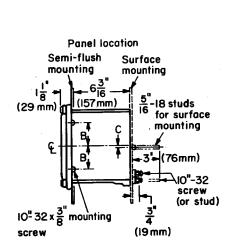


Fig. 8. Side view, single-end V1 case

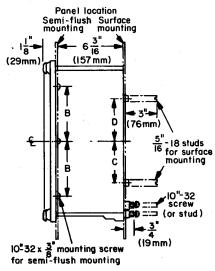


Fig. 9 Side view, L1, M1, and S1 single-end cases

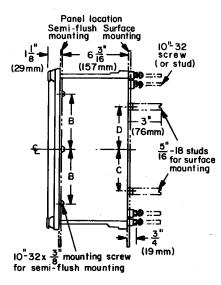


Fig. 10 Side-view, L2, M2, and S2 double-end cases

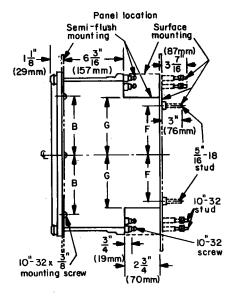


Fig. 11 Side view, L2B, L2D, and M2D deep cases only

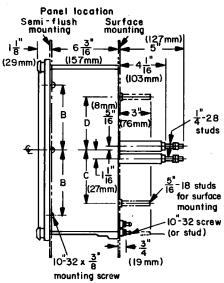


Fig. 12 Side view, L1E, M1E, and S1E single-end cases (nondrawout)

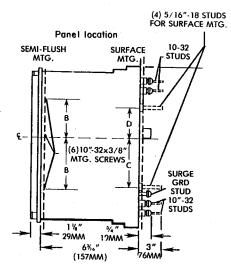


Fig. 13 Side view double-end L2T case

(gg)

Dimensions

GE Protective Relays

Dimensions are subject to change and should not be used for construction without approval. DRAWOUT CASE DIMENSIONS

_			Connecting	DIMENSIONS IN INCHES						
Size	Figure	Case	Plugs	Α	B①	C@	D	E©	F	G
٧١	8	Very Small	One	7	۱ ۱/ ₈	3/32		311/32		
\$1	9	Small	One	91/8	23/16	15/32	1 27/32	413/32		
S1E@	12	Small	One	91/8	23/16	15/32	1 27/32	413/32		
S2	10	Small	Two	105/ ₁₆	225/32	13/4	13/4	5		
MΊ	9	Medium	One	1 <i>5</i> 1/ ₈	5 ³ / ₁₆	45/32	45/32	713/32		
M1E@	12	Medium	One	1 <i>5</i> 1/ ₈	5³/16	4 ⁵ / ₃₂	45/32	713/32		
M2	10	Medium	Two	165/ ₁₆	5 ²⁵ / ₃₂	43/4	43/4	8		
M2D	11	Medium Deep	Two	165/16	5 ²⁵ / ₃₂	N/A	N/A	8	43/4	55/8
LI	9	Large	One	205/16	725/32	63/4	63/4	10		
L1E@	12	Large	One	205/16	725/32	63/4	63/4	10		
L2	10	Large	Two	20 ⁵ / ₁₆	725/32	63/4	63/4	10		
L2B3	11	Large }	Two	205/16	725/32	N/A	N/A	10	N/A	75/8
L2D	11	Large Deep	Two	205/16	725/32	N/A	N/A	10	63/4	75/a
L2T	13	Large	Two	205/16	725/32	63/4	725/32	10	N/A	N/A

Size			Connecting				DIMENSIONS IN MILLIMETERS			
	Figure	Case	Plugs	A	B①	C@	D ·	E©	F	G
۷۱	4	Very Small	One	178	29	2		85		
\$1	5	Small	One	232	56	29	47	112		
S1E@	8	Small	One	232	56	29	47	112		
\$2	6	Small	Two	262	- 71	44	44	127		
M1	5	Medium	One	384	132	106	106	188		
M1E@	8	Medium	One	384	132	106	106	188		
M2	6	Medium	Two	414	147	121	121	203		
M2D	7	Medium }	Two	414	147	N/A	N/A	203	121	143
L1	5	Large	One	516	198	171	171	254		
L1E@	8	Large	One	516	198	171	171	254		
L2	6	Large	Two	516	198	171	171	254		
L2B3	7	Large Deep	Two	516	198	N/A	N/A	254	N/A	194
L2D	7	Large Deep	Two	516	198	N/A	N/A	254	171	194
L2T	13	Large	Two	516	198	171	198	254	N/A	N/A

- 2 2 studs in "V" & "S" 4 in "M" and "L" size cases.
- Same depth except louvers extending additional ¼" prevent surface mounting.
- Size E style case is not completely drawout since bushings on rear of case must first be removed.
- (5) These are maximum dimensions.

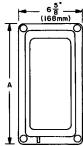
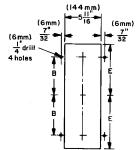
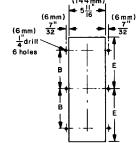
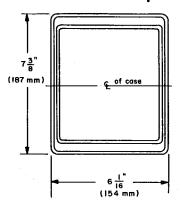




Fig. 14 Front view, all sizes

Panel drilling for semiflush mounting (front view) for V-1, S-1, S-1E, and S-2 cases

Panel drilling for semiflush mounting (front view) for M-1, M-1E, M-2, M-2D, L-1, L-1E, L-2, L-2B and L-2D


Fig. 15. Drawout relays for semiflush mounting

Dimensions and Data

(ge)

Dimensions

GE Protective Relays

7 8 (10 mm)

(159 mm)

(159 mm)

(10 mm)

3 1 1 1 3 1 8 (10 mm)

(10 mm)

(10 mm)

(10 mm)

(10 mm)

(10 mm)

(10 mm)

(10 mm)

(10 mm)

(10 mm)

(10 mm)

(10 mm)

(10 mm)

(10 mm)

(10 mm)

(10 mm)

(10 mm)

(10 mm)

(10 mm)

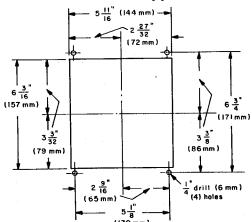


Fig. 1. Type C1 case relay mounting (front view)

Fig. 2. Type C1 case relay mounting (side view)

Fig. 3. Panel drilling for semiflush mounting for Type C1 case relays

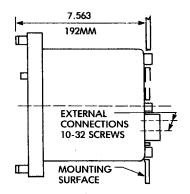


Fig. 4
Type C1 case
relays recommended for surface mounting
(side view) for panels no larger
than 0.188 in. (5mm) thick

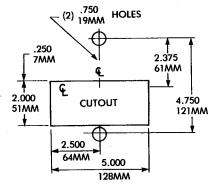


Fig. 5
Panel drilling for surface mounting
for Type C1 case relays on panels
no larger than 0.188 in. (5mm) thick

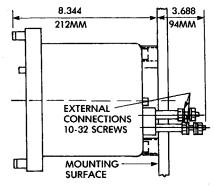
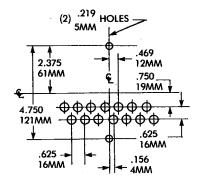
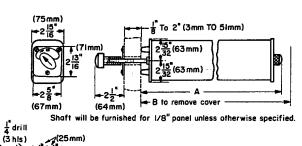


Fig. 6
Types C1 case relays
recommended for surface mounting
(side view) for panels larger
than 0.188 in. (5mm) thick



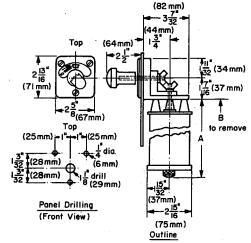

Fig. 7
Panel drilling for surface mounting
for Type C1 case relays
on panels larger than
0.188 in. (5mm) thick

(ge)

Dimensions

GE Protective Relays

Dimensions are subject to change and should not be used for construction without approval.


(25 mm) 1 3 (28 mm) 1 3 (28 mm)

Panel Drilling
Front View

Fig. 16 Type HEA61, HEA62 Relay

	Differsions					
Model	Inc	Inches				
	A	В	A	В		
HEA61A	115/16	21	287	533		
61AX	115/16	21	287	533		
61B	1213/16	23 ¹⁵ / ₁₆	325	608		
61BX	1213/16	2315/14	325	608		
61C	151/16	2811/14	383	729		
61CX	151/16	2811/14	383	729		
61D	15	285/8	381	727		
61E	12%	23 ^{15/} 16	319	608		
61J	11%	21	287	533		
61L	115/16	21	287	533		
61M	91/16	15¾	230	400		
61N	12%	23¹⁵/₁6	319	608		
61S	12 ¹³ / ₁₆	23 ^{15/} 16	325	608		
61T	15	28 ⁵ / ₈	381	727		
61V	14 ¹ / ₄	27 ¹ / ₈	362	689		
62A	115/ ₁₆	21	287	533		
62B	12 ^{13/} ₁₆	23 ¹⁵ / ₁₆	325	608		
62C	15	28 ⁵ / ₈	381	727		

Dimensions

"Top" of Front Plate and Panel Drilling remains as shown whether unit chosen is for angling right, left, up, or down

Fig. 17 Type HEA right angle (down)

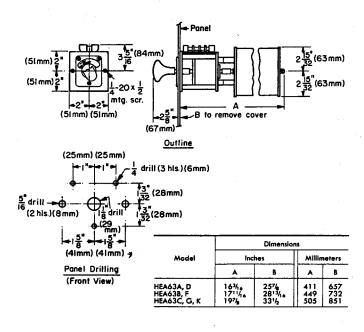


Fig. 18 Type HEA63 Relay

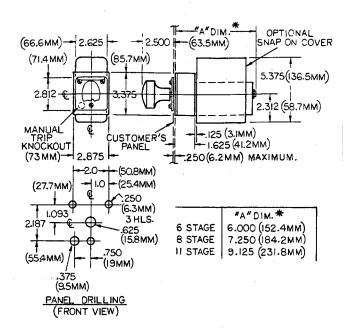


Fig. 19 Type HSA Relay

GE Protective Relays

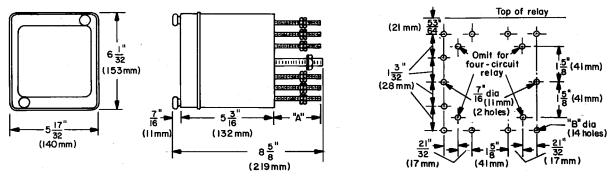


Fig. 20. Back-connected Type HFA Relay for surface mounting

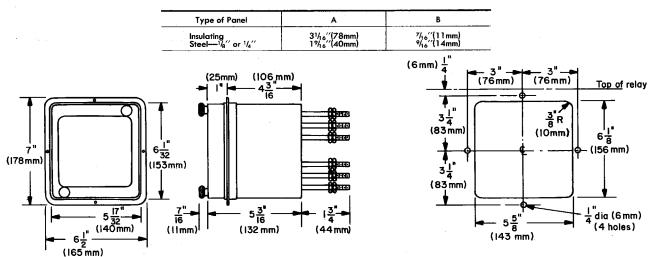
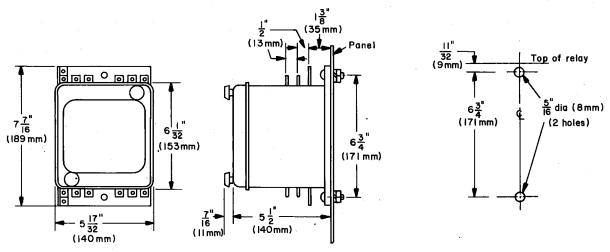
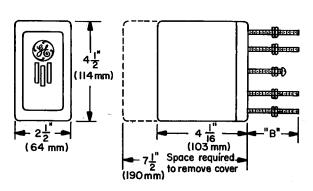
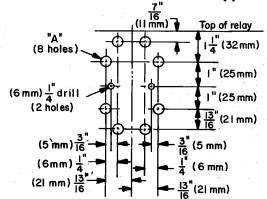


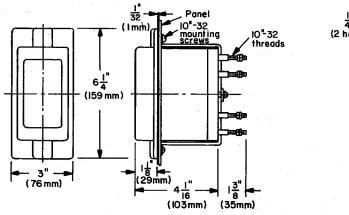
Fig. 21. Back-connected Type HFA Relays for semiflush mounting


Fig. 22. Front-connected Type HFA Relay for surface mounting

GE Protective Relays

Dimensions are subject to change and should not be used for construction without approval.



Type of Panel	A ①	В
Insulating	7/ ₁₆ ′′(11mm)	2 ¹³ / ₁₆ "(71mm)
Steel	9/ ₁₆ ′′(14mm)	1 ³ / ₈ "(35mm)

Fig. 23. Types HAA, HGA, HGC, HMA25A, HMA125A, NGA, NGV, and SAM back-connected Relays for surface mounting

1 Number of holes varies with relay type.

1 dia relay cover 7 32 (6mm)

2 holes)

2 5" 7 32 (6mm)

Fig. 24. Types HAA, HGA, HMA24A, HMA124A, NGA, NGV, and SAM back-connected semiflush Relays

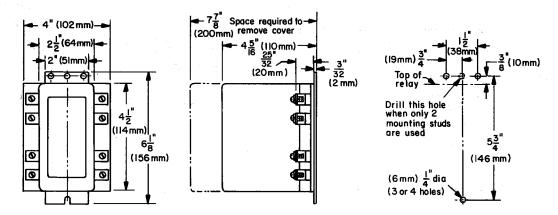


Fig. 25. Types HAA, NGA and NGV front-connected Relays for surface mounting

GE)

Dimensions

GE Protective Relays

Dimensions are subject to change and should not be used for construction without approval.

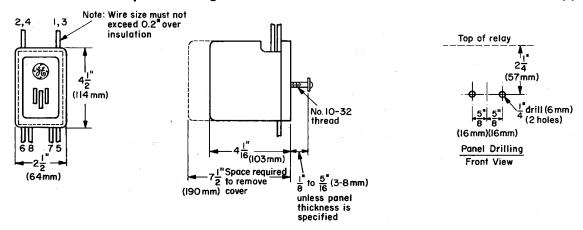


Fig. 26. Types HGA and HGC front-connected Relays for surface rear mounting

(IImm)

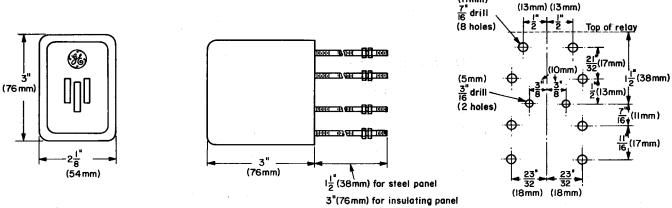


Fig. 27. Type HMA back-connected Relay for surface mounting (For HMA 25A and HMA 125A see Fig. 23 For HMA 24A and HMA 124A see Fig. 24)

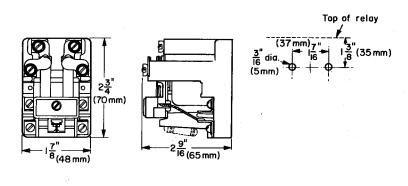


Fig. 28. Type HMA front-connected Relay for surface mounting

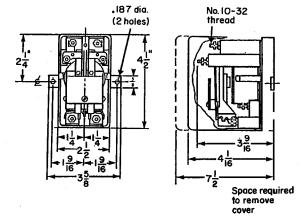


Fig. 28A.
Outline and Panel Drilling Dimensions
for Types HGA11S and HGA111S Relays

Dwg. 0165A7757-2

(gg)

Dimensions

GE Protective Relays

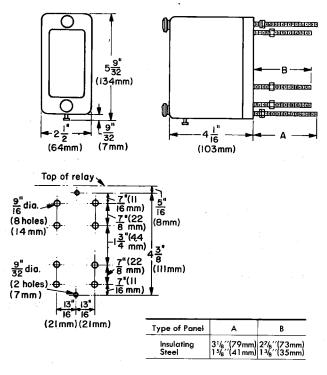


Fig. 29. Types PJC and PJV Relays

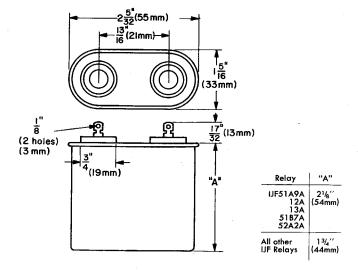


Fig. 30. Capacitor furnished with Type IJF Relay (mounting clips not shown)

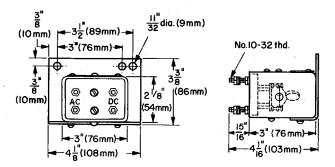


Fig. 31. Rectifier furnished with Type HFA65, HFA66, HFA18H, and H6A18J Relays

GE Protective Relays

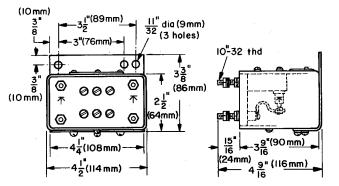


Fig. 32. Trip rectifier Cat. Nos. 102L218G7, G8, G9 (2-unit)

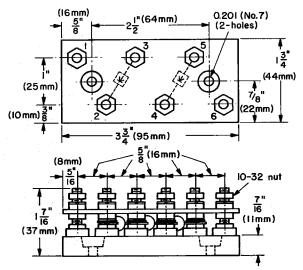


Fig. 33. Rectifier board, Cat. Nos. 295B233G8, G10

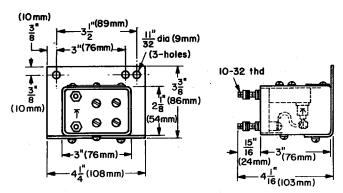


Fig. 34. Trip rectifier Cat. Nos. 102L218G10, G11, G12 (1-unit)

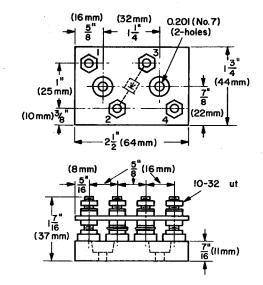


Fig. 35. Rectifier board, Cat. Nos. 295B233G5, G7

GE)

Dimensions

GE Protective Relays

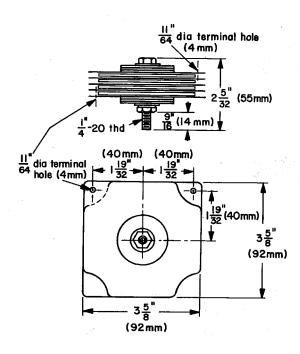


Fig. 36. Voltage limiter for current transformer secondaries
Cat. No. 6118766G3

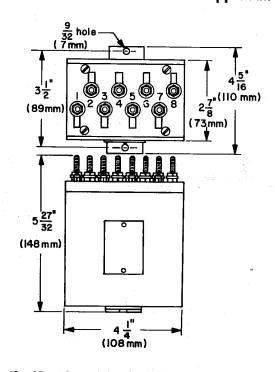
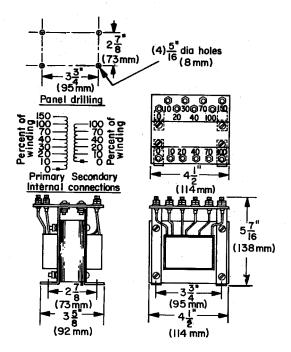
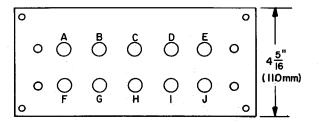



Fig. 37. Dimensions of auxiliary autotransformer Cat. No. 3661843



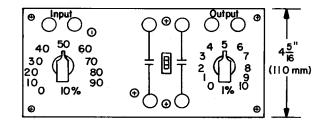

(114 mm) 3 1/6 (78 mm) 4 5' (110 mm)

Fig. 39. Dimensions of tripping reactor Model No. 12XBC11A

Fig. 38. Auxiliary transformer (for use with type GCXG51A Relays)
Cat. No. 367A0266

GE Protective Relays

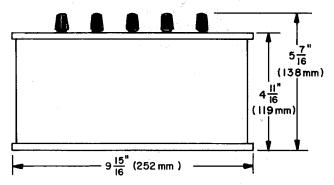


Fig. 40. Test resistor, Cat. No. 6158546

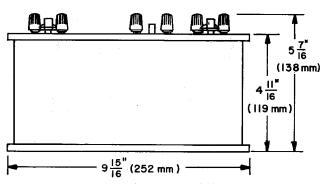


Fig. 41. Test box, Cat. No. 102L201

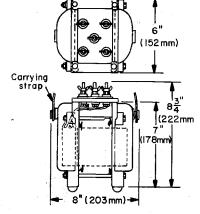
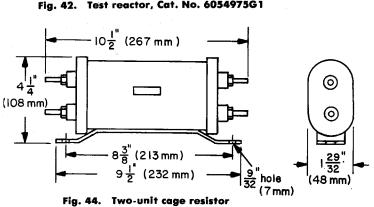



Fig. 42. Test reactor, Cat. No. 6054975G1

 $10\frac{1}{2}$ (267 mm) 0 (60mm) 9 1" (232mm) 9" hole 32 (7mm) (48mm)

Fig. 43. Single-unit cage resistor

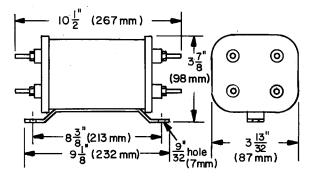


Fig. 45. Three- or four-unit cage resistor

GE Protective Relays

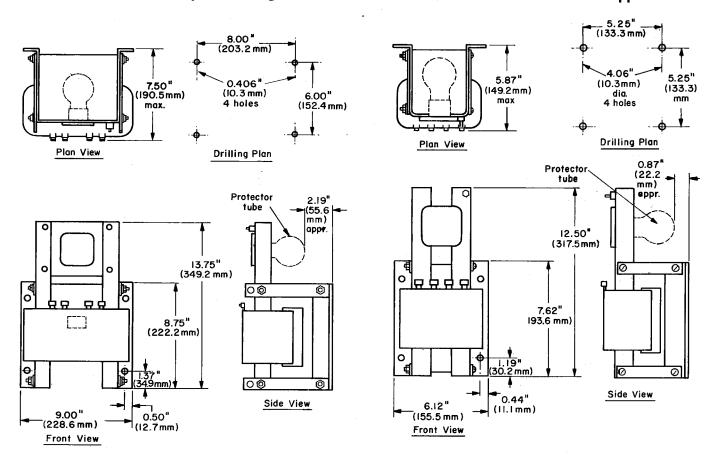


Fig. 46. Neutralizing reactor furnished with SPD, SPA wire pilot systems

Fig. 47. Mutual drainage reactor furnished with SPD, SPA wire pilot systems

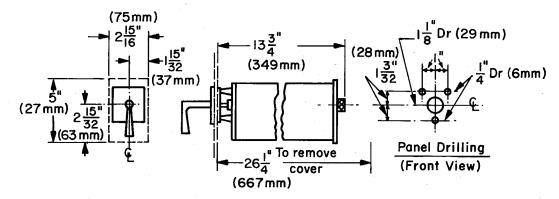
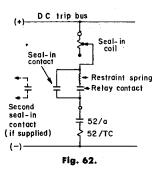


Fig. 48. Meter switch furnished with SPD, SPA wire pilot systems

Target and Contact Data

Target and Target Seal-in Units

GE Protective Relays


Fig. 61. Standard 0.2/2 Amp Hi-G target Seal-in unit set at 2 Amp Tap

DESCRIPTION

Target seal-in units are provided in many protective relays. These units provide a visible target to indicate that trip current has flowed. See Figure 61. They also contain sealin contacts which shunt the flow of trip current away from the restraint spring in a protective relay. When the protective relay operates, its contacts close to initiate the flow of current in the trip circuit. See Figure 62. In induction disc relays, that contact is mounted on the disc shaft and is connected to the trip circuit through the restraint coil spring. That spring has only a short time rating, so the trip current must be shunted away from it to prevent overheating. When the disc contact closes and trip current begins to flow, it flows through the coil of the target seal-in unit. This causes that hinged armature unit to operate and close its seal-in contact, which then shorts out the disc contact and restraint spring. The seal-in contact remains closed until the circuit breaker trips, the 52/a contacts open and the trip circuit is thus interrupted. The operation of the armature of this unit also sets a target flag to indicate that tripping has occurred. The flag remains set (red color showing) until manually reset from the front cover of the relay. On some units, a second electrically separate contact is also supplied.

RATINGS

The rating of target seal-in units is based on the nominal pickup current in amperes. The 2.0 ampere tap, which can carry up to 30 amperes trip current, is normally selected for relays which trip circuit breakers directly. If the tripping is through an auxiliary or lockout relay, a more sensitive tap (such as 0.2 amperes or 0.6 amperes) is used. Depending on the protective relay selected, the target seal-in unit may be dual rated (0.2/2, 0.6/2 or 1/4 amperes) or single rated (0.2, 0.6, 1 or 2 amperes). See Table 7 (16-24) for electrical characteristics.

TARGET UNITS

Target units (without seal-in contacts) are used in protective relays where the seal-in function is not required. This hinged armature unit is operated by the flow of current through its coil. The operation of the armature sets a target flag. The flag remains set (red color showing) until manually reset from the front cover of the relay. Depending on the protective relay selected, the target unit may be dual rated (0.2/2, 0.6/2 or 1/4 amperes - see Figure 63) or single rated (0.2, 1 or 2 amperes - see Figure 64.).

The coils of these target units are identical to those used in the target seal-in units. See Table 7 for electrical characteristics.

INSTANTANEOUS UNITS

Instantaneous overcurrent units are provided in many protective relays. These hinged armature units operate without intentional time delay when the current through the unit is above the pickup level. See Figure 65. Operation of the armature causes the contacts to close and raises the built-in target flag to the set position. The flag remains set (red color showing) until manually reset from the front cover of the relay. On some units, a second electrically separate contact is also supplied.

Contact Ratings of Instantaneous Units

Current closing rating: 30 amp at 250V dc and below

Carry continuously: 5 amp Interrupting rating,

Dc resistive (amps): 2.5 amp

The ratings of the operating coil (including pickup range, continuous rating and one second rating) appear on the descriptive page for the protective relay in which the instantaneous unit is used.

Fig. 63. Standard 0.2/2 Amp target only unit set at 0.2 Amp tap

Fig. 64. Single rated 1 Amp target only unit

Fig. 65. Standard Hi-G instantaneous unit

Target and Contact Data

Target and Target Seal-in Units

GE Protective Relays

TABLE 7. RATINGS OF TARGET SEAL-IN UNITS, HIGH SEISMIC (Hi-G)

		Dual Rated			
	0.2/2.	0.2/2.0 Amp 0.6/2.0 Amp			
	0.2	2.0 0.6 2		2.0	
Carry 30 Amps for (sec) Carry 10 Amps for (sec) Carry continuously (Amp) Minimum Operating (Amp) Minimum Drop-out (Amp) Dc resitance (Ohms)	0.05 .45 .37 .2 .05 8.3	2.2 20.0 2.3 2.0 0.5 .24	0.5 5.0 1.2 0.6 .15	3.5 30 2.6 2.0 0.5 .18	
Dc resistive Interrupting rating (Amps)	2.5 Amp @125 Vdc				

TABLE 8. SAM 200 SERIES TARGET RATINGS

Operate Level	Single Rated
Operate sever	0.15 Amp

Relay Standards

GE Protective Relays

INTRODUCTION

All General Electric protective relays in this handbook, unless otherwise noted, are designed and manufactured in accordance with the ANSI/IEEE standard C37.90 that applies to protective relays. To better understand the application, design, rating and selection of protective relays, certain parts of the American National Standard (ANSI) and IEEE standard will be summarized for easy reference. This summary should help guide the relay engineer regarding service conditions, standard ratings and other application requirements, but is not intended as a substitute for a reference to the complete standard.

REFERENCE STANDARD

ANSI/IEEE C37.90 - 1989 "Standards for Relays and Relay Systems."

Scope and Limitations

The standards and references that follow apply primarily to relays and relay systems used to control power switchgear.

What is a Relay?

A relay is "an electrical device designed to respond to input conditions in a prescribed manner, and after specified conditions are met, to cause contact operation or similar abrupt change in associated electric control circuits."

Usual Service Conditions:

Relays must be suitable for operation under the following:

- (a) The ambient temperature of the air immediately around the relay case or other enclosure shall be within the limits of -20C to +55C.
- (b) The altitude shall not exceed 5000 ft (1500 meters).

Ratings

(a) Standard current and voltage ratings— The standard current and voltage ratings for relays shall be as follows:

Voltag	Voltage (V)		
Ac (rms)	Dc	Ac (rms)	
120 240 480	24 48 125 250	1 5	

CONTENTS

	Applicable Standard
Usual Service Conditions Ratings—Current and Voltage Maximum design for all relays Ac and dc auxiliary relays Make and carry rating for tripping contacts Tripping contacts Tripping contacts duty cycle Dielectric tests by manufacturer Dielectric tests by user Surge Withstand Capability (SWC) Fast Transient Test Radio Frequency Interference (RFI) Seismic Qualifications - Class IE Equipment for Nuclear Power Generating Stations Seismic testing of protective and auxiliary relays Electric Power System Device Function numbers	ANSI/IEEE C37.90-1989 Standards for Relays and Relay systems ANSI/IEEE C37.90-1989 ANSI/IEEE C37.90-1989 ANSI/IEEE C37.90-1989 ANSI/IEEE C37.90.1-1989 ANSI/IEEE C37.90.1-1989 GE in-house test (IEEE standard under preparation) IEEE 323-1974. Standard for Qualifying Class IE Equipment for Nuclear Power Generating Stations Formerly IEEE 501, now IEEE C37.98 Seismic Tesing of Relays ANSI C37.2

- (b) Allowable variation from rated voltage Protective relays which are designed to be energized continuously with ac voltage shall operate without damage at rated frequency with voltage not more than 10 percent above rated voltage, but not necessarily in accordance with temperature rise limits established for operation at rated voltage.
- (c) Maximum design voltage or current— The maximum design voltage or current for all relays, other than voltage-operated auxiliary relays, shall be equal to the rated voltage or current of the relay. This is the highest rms alternating or direct voltage or current at which the relay is designed to be energized continuously without exceeding the allowable temperature rise for the class of insulation (Many GE relays are designed to continuously carry current in excess of the rated current).

For dc auxiliary relays, relay power supply, or auxiliary relay circuits with dc voltage ratings, the maximum design voltage shall be as shown in Table 9.

The maximum design voltage for ac auxiliary relays shall be 110 percent of rated voltage.

(d) Range of operating voltage for auxiliary relays — dc auxiliary relays, which may be continuously energized for indefinite periods, dc power supplies, and auxiliary relay circuits with dc voltage ratings, shall be able to withstand the maximum design voltage without exceeding the allowable temperature rise. These relays shall operate successfully over a range from 80 percent of rated voltage to the maximum design voltage. Ac auxiliary relays shall be able to withstand 110 percent of rated voltage without exceeding the allowable temperature rise. These relays shall operate successfully over a range from 85-110 percent of rated voltage.

Table 9.

Rated Volts	Maximum Design Volts
24 48	28
48	56 140
125 250	140
250	280

(e) Make and Carry Ratings for Tripping Contacts (revised 1978) — a tripping contact is designed for the purpose of energizing a power circuit breaker trip coil.

The contact shall make and carry 30 amperes for at least 2000 operations in a prescribed duty cycle.

GE)

Relay Standards

GE Protective Relays

Dielectric Tests

General—Dielectric tests between circuits, and dielectric tests between circuits and relay frame, shall be considered as routine tests. Dielectric tests across open contacts shall be considered as design tests. Dietectric tests are not required across contacts with surge-suppression components, nor across solid-state output circuits; when these are used, the Surge Withstand Capability (SWC) test should be substituted for the dielectric test.

Standard Test Voltage — Relays rated 600 volts and below shall withstand for one minute a low-frequency alternating-current voltage test of twice rated voltage plus 1000 volts with a minimum of 1500 volts.

Duration of Test Voltage

The test voltage for all relays shall be applied continuously for a period of 60 seconds.

As an alternate, to be made at the point of manufacture only, it is permissible to test any relay for one second at a value of 20 percent higher than the standard 60 second test voltage.

Dielectric Tests by Users

Dielectric tests, in accordance with the standard, may be made by the user on new relays only, to determine whether specifications are fulfilled. New relays are defined as those which have not been in service and are not more than one year old from date of shipment and have been suitably stored to prevent deterioration.

Additional dielectric tests may be made, using 75 percent of the standard test voltage, at the point of installation to determine the practicality of placing or continuing the device or equipment in service.

Points of Application of Voltage

The test voltage of insulation to ground and between circuits shall be applied successively between each electric circuit and all other electric circuits, and between each electric circuit and the metal frame of the relay. The test voltage across open contacts shall be applied to the relay terminals which connect to the contacts.

Surge Withstand Capability (SWC) Tests

The surge withstand capability (SWC) is a design test for relay systems and, in par-

ticular, static relays.

The purpose of this test is to apply to the terminals of the relay system a standardized test wave shape that is representative of surges observed and measured in actual installations. In order to pass this test, relay systems must be able to withstand the applied surge without damage to components and without operating incorrectly.

Surge Withstand Capability (SWC) Wave Shape and Characteristics

The SWC test wave is an oscillatory wave, with a frequency range of 1.0 MHz to 1.5 MHz, voltage range of 2.5 kV to 3.0 kV crest value of the first half cycle peak, and envelope decaying to 50 percent of the crest value of the first peak in not less than 6 μ s from the start of the wave. The source impedance of the surge generator used to produce the test wave shall be 150 ohms \pm 5 percent. The test wave to be applied to test specimen at a repetitive rate of not less than 50 tests per second for a period of not less than 2.0 seconds.

NOTE: (1) All voltage and time values refer to the open circuit condition of the surge generator.

(2) Time period and repetition rate have been chosen to cover equipment which is used on 50 Hertz as well as 60 Hertz systems. The SWC test shall be applied to the relay as specified in ANSI C37.90.

FAST TRANSIENT TEST

(Ref: W. C. Kotheimer and L. L. Mankoff, Protection of Relays from Their Electrical Environment - Georgia Tech Relay Conference, 1977)

The Fast Transient test simulates the surges due to the interruption of inductive devices such as auxiliary relay coils, alarm bell coils, solenoids, etc. These surges are localized in effect, being attenuated by a few tens of feet of circuit from the source. Laboratory experiments show, however, that this surge presents a very real hazard to solid state equipment in the circuit close to it, possibly causing false operation or damage to semiconductor devices.

This "fast transient," produced by interrupting the current through an auxiliary relay coil or a breaker trip coil, has rise times in the 5-nanosecond range and power in the tens of kilowatts range. When subjected to such a transient, many semiconductor devices can be degraded such that failure may occur at a later time.

All new relay designs are subjected to this "fast transient" as a design-proof test. It was found that relays which survive the SWC test may fail the "fast transient" test.

(Recommend Guide Form Specification)

"The test shall be the application for two seconds of at least 60 pulses per second at each polarily from a surge generator having a source impedance of about 75 ohms resistance.

"When measured open circuit, the surge generator shall produce pulses having a rise time of 5 nanoseconds or less to a peak value of ± 5000 volts. The test voltage shall be applied to the relay as specified in ANSI C37.90 for the SWC test."

RADIO FREQUENCY INTER-FERENCE (RFI)

Approximate Frequencies below 550 Mhz used by Electric Utilities in the USA

Freq. Band Mhz	Notes	
27 37 47-48 158-173 216-220	Citizens Band, Class D	
220-225 450-470 470-512	Citizens Band, Class E Citizens Band, Class A Land Mobile	

A study has indicated that the possibility of misoperation of a protective or control device to radiated electromagnetic interference is a function of the following:

- Field intensity and frequency of radiation.
- Sensitivity of the affected circuitry to radiation.
- Coupling efficiency resulting from device construction, lead configuration, etc.

An in-house test to check the security of static relays against false tripping is now used.

(Recommended Guide Form Specification)

"The relay shall not be damaged nor exhibit spurious output when subjected to a radio frequency susceptibility test, over a frequency range of 25 - 500 megahertz with a field strength measured at the front face of the relay, of 7.0 volts per meter. For these tests the relay is energized and connected for normal operation."

GE)

Relay Standards

GE Protective Relays

STANDARD FOR QUALIFYING CLASS 1E EQUIPMENT FOR NUCLEAR POWER GENERATION STATIONS® IEEE323-1974—A Guide for the Qualification of Class 1E

Class 1E - The safety classification of the electric equipment and systems that are essential to emergency reactor shutdown, or are otherwise essential in preventing significant release of radioactive material to the environment.

Testing - Outline of procedures which can be used to seismically qualify equipment by test.

Proof Testing - To qualify equipment for a particular application.

Fragility Testing - To qualify equipment by determining its ultimate capability.

SEISMIC TESTING OF RELAYS® IEEE C37.98

(Formerly IEEE-501)—

standard to establish procedures for determing the seismic capabilities of protective and auxiliary relays by fragility and testing.

In order to define the conditions for fragility testing of relays, parameters in three separate areas must be specified.

- (a) Electrical settings and inputs to the relay.
- (b) The change in state deviation in operating characteristics or other change of performance which constitutes failure.
- (c) The seismic vibration environment to be imposed during test.

Typical Fragility Test

Tests are conducted with biaxial multifrequency broadband vibrations applied to the shaker table. The standard response spectrum (SRS) of the vibrational stimulus (See Figure 66) is plotted as a percentage of

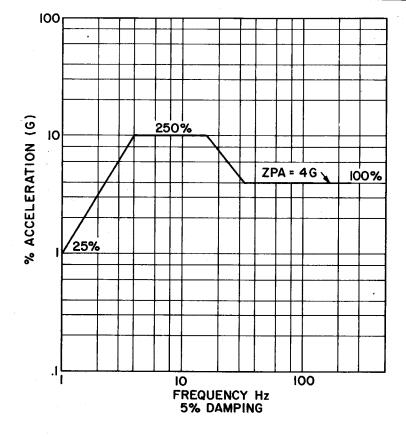


Fig. 66. Multi-frequency broad-band standard response spectrum shape (SRS) for relay with ZPA level of 4 Gs

the Zero Period Acceleration (ZPA). The 1.0 Hz point is 25% of the ZPA, the 4.0 to 16.0 HZ band is 250% of the ZPA and 33.0 HZ and above is equal to the ZPA. The range of maximum amplification of acceleration, 4.0 to 16.0 HZ, has been designed to most realistically match the range of peak acceleration input to the relays by equipments and panels on which they are mounted.

The stimulus is increased in amplitude until failure occurs (per Item b, above) or the limits of the shaker table are reached. The fragility level of a relay or device is defined as the maximum ZPA level, expressed in Gs, that can be applied without causing failure.

① Relays for Class 1E duty are tested and qualified on a selective basis only. For information on specific relay types contact your local General Electric sales office.

Power System Device Function Numbers

Used in Protective Relaying

GE Protective Relays

APPLICATION

For electrical substations, generating stations, power utilization and conversion equipment.

Purpose—To quickly identify the function, on drawings or in instruction books, of each device in many types of automatic, semi-automatic and manual switchgear equipment. ANSI Standard C-37.2 includes both protective relay device numbers as well

as devices used in automatic control. This industry standard was originally prepared for electromechanical relays but also applies to equipment that has electronic or solid state devices. The device numbers listed below were extracted from ANSI C-37.2 and are those commonly used in protective relaying.

Device Number	Description
2	Time-delay Starting or Closing Relay
8	Control Power Disconnecting Device
15	Speed or Frequency Matching Device
21	Distance Relay
24	Volts per Hertz Relay
25	Synchronizing or Synchronism-Check Device
27	Undervoltage Relay
30	Annunciator Relay
32	Directional Power Relay
37	Undercurrent or Underpower Relay
38	Bearing Protective Device
40	Field Relay
46	Reverse-phase or Phase-balance Current Relay
47	Phase-sequence Voltage Relay
49	Machine or Transformer Thermal Relay
50	Instantaneous Overcurrent or Rate-of-Rise Relay
51	Ac Time Overcurrent Relay
52	Ac Circuit Breaker
59	Overvoltage Relay
60	Voltage or Current Balance Relay
64	Ground Detector Relay
66	Notching or Jogging Device
67	Ac Directional Overcurrent Relay
68	Blocking Relay
69	Permissive Control Device
00	·
74	Alarm Relay
76	Dc Overcurrent Relay
78	Phase-Angle Measuring
	or Out-of-Step Protective Relay
79	Ac Reclosing Relay
81	Frequency Relay
85	Carrier or Pilot-wire Receiver Relay
86	Lockout Relay
87	Differential Protective Relay
94	Tripping or Trip-free Relay

Power System Device Function Numbers

Used in Protective Relaying

GE Protective Relays

Examples of Device Function Number Use

AC bus DC control bus 52-E To closing circuit of

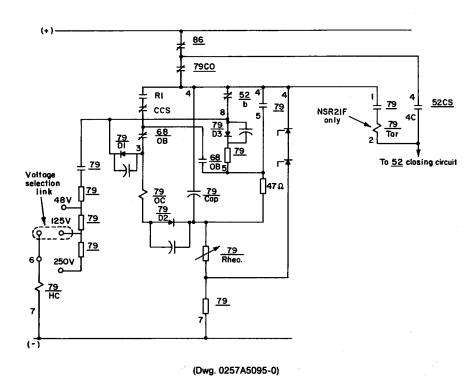
Fig. 67. Typical external connection diagram of Type IAV54E undervoltage relay and IAV51A overvoltage relay applied in an automatic bus transfer scheme (preferred-emergency throwover).

LEGEND

(Figure 67)

1, 2, etc. –Relay stud numbers 27 –Undervoltage relay, 1 52 –Power circuit breaks

-Undervoltage relay, Type IAV
-Power circuit breaker


Auxiliary switch, closed when circuit breaker is closed

-Auxiliary switch, closed when circuit breaker is open -Overvoltage relay, Type IAV

59 E P

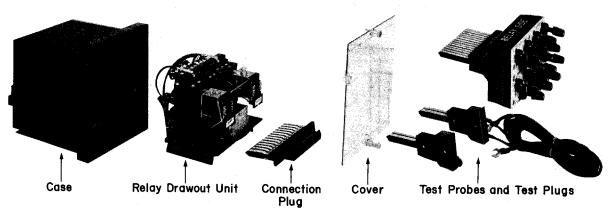
-Preferred circuit
-Seal-in unit, with target

-Trip coil

Legend Device No. Description Type 52C SB Control Switch 52 Ac Circuit Breaker 79 **Reclosing Relay** 86 Lockout Relay (if used) 79C0 **Reclosing Cutout Switch** RI **Reclosing Initiating Unit** 68/0B **Out-of-Step Blocking Relay** ccs **Channel Cutout Switch**

52CS Control Switch Development X Denotes Contact Closed

Contacts Handle End	Close	Normal After Close	Normal After Trip	Trip	
1 0-1-0 0-1-0 2	1				Х
1 04F0 04F0 2	2				Х
3	3		х	х	
3 0-1-0 0-1-0 4	4 -	Х			
5000000	5	Х	х		
5 0410 0410 6	6	х	х		


Figure 68. Typical External Connections for the NSR21E and NSR21F Reclosing Relays. (Reclosure Initiated by RI contact)

Drawout Relay Cases

Size C

GE Protective Relays

(Photo 8043254)

DESCRIPTION

The one-piece molded dusttight C size drawout relay case is designed to house a relay unit with one connection plug. The relay unit is easily removed for testing and maintenance.

The one-piece molded case will meet or exceed the applicable ANSI and IEEE relay standards. Reference ANSI C37.90 and C37.90a - IEEE 313 and 472.

CONSTRUCTION (See Fig. 69)

Case is a one-piece glass-filled polyester molding suitable for either semi-flush or surface mounting.

A hooded flange prevents accumulated debris from falling into relay as cover is removed. "Out of Service" legend on bottom of connection block is visible only with connection plug removed indicating relay is disconnected. Paper label inside of case and metal nameplate on relay unit identify the relay model number. The dead-front feature renders this construction very safe even when the cover is removed.

Relay Drawout Unit consists of one-piece

Fig. 69. Typical "C" case construction

molded support structure with relay subassemblies mounted to provide easy access for maintenance.

Connection Plug makes positive silver-tosilver contact between fingers on the drawout element and the bottom connection block on the case.

Cover is gasketed and completely transparent, permitting visual inspection of the relay and determination of shorting bar and target position. The target reset button projects from the front of the cover.

Test Probe and Test Plug are used for routine in-case testing. Testing is accomplished by removing the connection plug and inserting the XCA11A2 ammeter probe with, suitable external connections, or the XCA1-1A1 two-position four-point general test probe. Also, the XCA28A1 full-width 14-position 28-point test plug is available to provide complete flexibility in testing the "C" case relay. The XCA11A test probes are keyed to the barrier strips of the case for added security and safety.

OPERATION (See Fig. 70)

The Connection Plug when fully inserted, energizes the relay circuits by electrically connecting contact fingers on the **Case** and the **Drawout Unit**.

As the connection plug is withdrawn, current transformer secondary connections are short-circuited and the relay is de-energized as follows:

- 1. Plug clears short contact fingers in trip circuit before disconnecting any other circuits. There is no need to first operate a separate trip circuit switch to prevent false tripping.
- 2. Current circuit fingers on case connection block engage the shorting bar located at lower front of case to short-circuit current transformer secondary connections.
- 3. Window provides visual confirmation of contact between shorting bar and current circuit contact fingers.
- 4. Plug clears case contact fingers and then long fingers on removable element to open relay current circuit.
- 5. Plug is fully withdrawn and relay is completely de-energized.

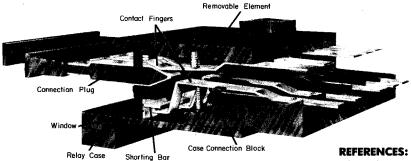
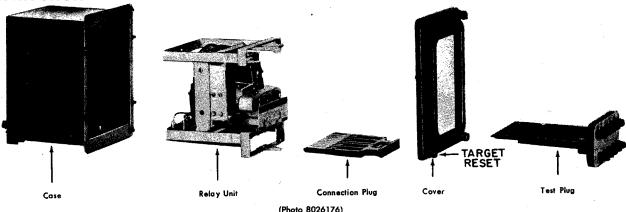


Fig. 70. Drawout Case (C) Connection System

Dimensions Section 16 Relay Standards Section 16

Dimensions and Data



Drawout Relay Cases

Sizes S, M, L or V

GE Protective Relays

CONSTRUCTION

DESCRIPTION

The fabricated steel and phenolic, dust proof, drawout relay case is designed to house relay units with one or two connection plugs as required for the specific relay type.

The relay unit is easily removed for testing and maintenance. This fabricated case is available in sizes: very small (V), small (S1, S2), medium (M1, M2) and large (L1, L2). The designation S1E, M1E and L1E indicates added bushings or insulation for some specific applications. The suffix "B", such as L2B, indicates added louvers for ventilation. The suffix "D", such as M2D and L2D, indicates added depth or deep case. The suffix "T", such as L2T, indicates a dedicated surge ground terminal board.

The fabricated case will meet or exceed the applicable ANSI and IEEE relay standards. Reference ANSI C37.90 and C37.90a - IEEE 313 and 472.

CONSTRUCTION (See Fig. 71)

Case is fabricated steel with phenolic end blocks, and is suitable for either semi-flush or surface mounting. Paper label inside of case and metal nameplate on relay unit iden-

Fig. 71. Typical Case Construction

tify the relay model number. The dead-front feature renders this construction safe even when the cover is removed.

Relay Drawout Unit is securely mounted on a steel cradle which permits easy accessibility for maintenance.

Connection Plug makes positive silver-tosilver contact between the contact fingers on the relay contact block and the case terminal block. Where the relay internal circuits require more than 10 contact fingers, an additional terminal block, contact block, and connecting plug is provided at the top of the relay.

Cover is gasketed steel or phenolic frame with glass insert which permits visual inspection of the relay and determination of target position. The target reset button projects from the bottom of the cover.

Test Plug Routine testing can be accomplished by removing the relay cover and connecting plug and substituting a 10- or 20-point Type XLA test plug with suitable external connections. See Section 13 for Test Plug details.

OPERATION (See Fig. 72)

The Connection Plug when fully inserted, energizes the relay circuits by electrically connecting contact fingers on the Case Terminal Block and the Relay Removable Element

As the connection plug is withdrawn, current transformer secondary connections are short-circuited and the relay is de-energized as follows:

- 1. Connection plug clears short contact fingers in trip circuit before disconnecting any other circuits. There is no need to first operate a separate trip circuit switch to prevent false tripping.
- 2. Terminal block contact fingers disengage, but current circuit is maintained through auxiliary contact fingers.
- 3. Current circuit fingers on terminal block engage shorting bar to short-circuit current transformer secondary connections.
- **4.** Plug clears auxiliary contact fingers and removable element contact fingers to open relay current circuit.
- 5. Plug is fully withdrawn and relay is completely de-energized.

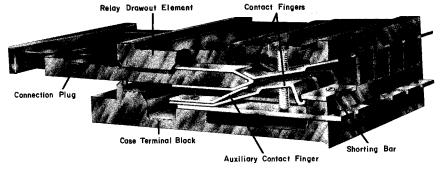


Fig. 72. Drawout Case (S, M, L or V) Connection System

Nomenclature

GE Protective Relays

RELAY NOMENCLATURE SYSTEM

INTRODUCTION

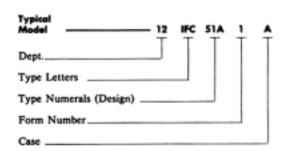
The GE protective relay nomenclature system has been developed over a number of years and is used to describe electromechanical,

static, and static equipment relays. You will note some open or blank spaces to allow for new product developments.

The first three or four letters included in the model numbers assigned to protective relays convey a general idea of each relay's characteristic features of design and application. There are always three, and sometimes four, of these letters used in the following manner:

Letter	1st Position	2nd Position®	3rd Position	4th Position
	Operating Principle	Protective Application	Primary Function	odd'l. Definition
ZZ-7K-101m008>	Automotic Bolonce Cyfinder—Induction Electronic Group of Units Hinged Armoture Induction Disk Group of Units Motor Non-GE - ①	Auxiliary Bus Carrier Direct Current Feeder-Time Delay Generator Feeder-High Speed Line-High Speed Machine Network	Auxiliary Blocking (or Bearing) Current Differential Frequency Loss of Excitation Synch. Check Phase Sequence Phase Angle Time	Balance or Blocking Current Polarized Ground Modified Circle Negative Sequence
P	Plunger	Plot Wire	Power Directional	Positive Sequence or Potential Polarized
# X X X X X X X X X X X X X X X X X X X	Rotating Armature Static or Solid State Temperature Transformer Ultra-High Speed Vacuum Miscellaneous	Power Supply Transformer	Reclosing or Phase Sequencing Synchronizing or Selector Temperature	Supervised or Controlled
		Vecuum	Voltage Power Rectance Addwittance—Mho Impedance	Voltage Restroined

- Typical example Telephone Type relay.
- For electro-mechanical relays, 2nd letter designation may be arbitrary.


EXAMPLES:

HFA—Hinged armature Auxiliary
GCX—Group of Units—Reactance Distance
JBCG—Group of Units—Ground Directional Overcurrent
SLY—Static Line Mho
SLYG—Static Line Mho Ground

STD-Static-Differential protection of Transformers

Following the "Type Letters" are "Type Numerals" and "Form Numbers". These are assigned in sequence and have no special significance; they cover major and minor variations in design necessary to adapt the relay to a particular application.

Newer special relays, designed at Customer request, use '99' as "Type Numerals" to distinguish special from standard designs. Example: 12 IAC '99' AB 001A.

